The size of characters of compact Lie groups

被引:0
|
作者
Hare, KE [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Pointwise upper bounds for characters of compact, connected, simple Lie groups are obtained which enable one to prove that if mu is any central, continuous measure and n exceeds half the dimension of the Lie group, then mu(n) is an element of L-1. When mu is a continuous, orbital measure then mu(n) is seen to belong to L-2. Lower bounds on the p-norms of characters are also obtained, and are used to show that, as in the abelian case, m-fold products of Sidon sets are not p-Sidon if p < 2m/(m + 1).
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [41] Continuity of π-perfection for compact Lie groups
    Fausk, H
    Oliver, B
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 135 - 140
  • [42] On the Poisson relation for compact Lie groups
    Sutton, Craig
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 57 (04) : 537 - 589
  • [43] Loops as sections in compact Lie groups
    Á. Figula
    K. Strambach
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2017, 87 : 61 - 68
  • [44] Maximal Subgroups of Compact Lie Groups
    Antoneli, Fernando
    Forger, Michael
    Gaviria, Paola
    JOURNAL OF LIE THEORY, 2012, 22 (04) : 949 - 1024
  • [45] Loops as sections in compact Lie groups
    Figula, A.
    Strambach, K.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (01): : 61 - 68
  • [46] Polars of disconnected compact Lie groups
    Tanaka, Makiko Sumi
    Tasaki, Hiroyuki
    DIFFERENTIAL GEOMETRY AND GLOBAL ANALYSIS: IN HONOR OF TADASHI NAGANO, 2022, 777 : 211 - 225
  • [47] On the Poisson relation for compact Lie groups
    Craig Sutton
    Annals of Global Analysis and Geometry, 2020, 57 : 537 - 589
  • [48] LIE ALGEBRAS OF LOCALLY COMPACT GROUPS
    LASHOF, RK
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (03) : 260 - 260
  • [49] ON RADON TRANSFORMS ON COMPACT LIE GROUPS
    Ilmavirta, Joonas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) : 681 - 691
  • [50] Counting geodesics on compact Lie groups
    Seco, Lucas
    San Martin, Luiz A. B.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 56 : 325 - 343