Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions

被引:193
|
作者
Fang, Zhou [1 ]
Song, Hai-liang [1 ]
Cang, Ning [1 ]
Li, Xian-ning [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Microbial fuel cell; Constructed wetland; Electron distribution; Azo dye; Decolorization; Influence factors; BIOELECTRICITY GENERATION; DECOLORIZATION; DEGRADATION; BIODEGRADATION; PERFORMANCE; SYSTEM;
D O I
10.1016/j.bios.2014.12.047
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Microbial fuel cells (MFCs) have got tremendous attention for their capability to enhance the degradation of some recalcitrant pollutants and simultaneous electricity production. A microbial fuel cell coupled constructed wetland (CW-MFC) is a new device to treat the wastewater and produce energy which has more wastewater treatment volume and more easily to maintenance than others MFCs. The studies on the performance of CW-MFCs are necessary. In this work, the effects of hydraulic residence time (HRT), reactive brilliant red X-3B (ABRX3) proportion and COD concentration on the electricity production of CW-MFC and the degradation characteristics of ABRX3 were investigated. The decolorization rate and the electricity production increased to a peak before slowing down with the elongation of HRT. The highest decolorization rate and electricity production were obtained when HRT was 3 days. The ABRX3 proportion (calculated as COD) in the wastewater played an important role in decolorization and electricity production, which may influence the distribution of electrons in the system. The power density of CW-MFC and the decolorization rate decreased concomitantly with an increasing ABRX3 proportion. The COD concentration influenced the CW-MFC performance slightly. The highest decolorization rate and power density reached 95.6% and 0.852 W/m(3), respectively, when the COD concentration was 300 mg/L while the ABRX3 proportion was 30%. The coulombic efficiency of the CW-MFC depended on glucose and ABRX3 proportions in the wastewater. ABRX3 acquired more electrons than the anode. Further investigations are needed to optimize CW-MFC performance and explain the mechanism of biorefractory compounds degradation and electron motion in CW-MFCs. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 141
页数:7
相关论文
共 50 条
  • [21] Influence of operating conditions on the degradation kinetics of an azo-dye in a vertical flow constructed wetland using a simple mechanistic model
    Freire, F. G.
    Davies, L. C.
    Vacas, A. M.
    Novais, J. M.
    Martins-Dias, S.
    ECOLOGICAL ENGINEERING, 2009, 35 (10) : 1379 - 1386
  • [22] Advancement in constructed wetland microbial fuel cell process for wastewater treatment and electricity generation: a review
    Bhaduri, Soumyadeep
    Behera, Manaswini
    Environmental Science and Pollution Research, 2024, 31 (38) : 50056 - 50075
  • [23] Electricity Production and Phenol Removal of Winery Wastewater by Constructed Wetland - Microbial Fuel Cell Integrated With Ethanol Tolerant Yeast
    Kongthale, Ganyarat
    Sotha, Santipap
    Michu, Panisa
    Madloh, Areeyah
    Wetchapan, Patcharida
    Chaijak, Pimprapa
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2023, 13 (02):
  • [24] Hydraulic behaviour of vertical-flow constructed wetland under different operating conditions
    Panuvatvanich, Atitaya
    Koottatep, Thammarat
    Kone, Doulaye
    ENVIRONMENTAL TECHNOLOGY, 2009, 30 (10) : 1031 - 1040
  • [25] Enhanced wastewater treatment and electricity generation using stacked constructed wetland–microbial fuel cells
    Prashansa Tamta
    Neetu Rani
    Asheesh Kumar Yadav
    Environmental Chemistry Letters, 2020, 18 : 871 - 879
  • [26] Electricity generation in a microbial fuel cell using yogurt wastewater under alkaline conditions
    Luo, Haiping
    Xu, Guofang
    Lu, Yaobin
    Liu, Guangli
    Zhang, Renduo
    Li, Xiao
    Zheng, Xiyuan
    Yu, Meihan
    RSC ADVANCES, 2017, 7 (52): : 32826 - 32832
  • [27] Research on the electricity production performance and degradation process of microbial fuel cell treating azo-dye saline wastewater
    Pan W.
    Ji Z.
    Wang J.
    Li S.
    Huang Z.
    Guo X.
    Liu J.
    Zhao Y.
    Yuan J.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (06): : 3306 - 3313
  • [28] Feasibility study of simultaneous azo dye decolorization and bioelectricity generation by microbial fuel cell-coupled constructed wetland: substrate effects
    Fang, Zhou
    Cheng, Sichao
    Wang, Hui
    Cao, Xian
    Li, Xianning
    RSC ADVANCES, 2017, 7 (27) : 16542 - 16552
  • [29] Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland
    Fang, Zhou
    Cheng, Sichao
    Cao, Xian
    Wang, Hui
    Li, Xianning
    ENVIRONMENTAL TECHNOLOGY, 2017, 38 (08) : 1051 - 1060
  • [30] Treatment of nitrogenous wastewater by a constructed wetland-coupled microbial fuel cell system: a review
    Yu, Xinxin
    Shi, Yucui
    You, Shaohong
    Tang, Gang
    WATER REUSE, 2024, 14 (02) : 208 - 225