SOBOLEV SPACES, FINE GRADIENTS AND QUASICONTINUITY ON QUASIOPEN SETS

被引:13
作者
Bjorn, Anders [1 ]
Bjorn, Jana [1 ]
Latvala, Visa [2 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
[2] Univ Eastern Finland, Dept Math & Phys, POB 111, FI-80101 Joensuu, Finland
基金
瑞典研究理事会;
关键词
Fine gradient; fine topology; metric space; minimal upper gradient; Newtonian space; quasicontinuous; quasiopen; Sobolev space; CONTINUITY;
D O I
10.5186/aasfm.2016.4130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study different definitions of Sobolev spaces on quasiopen sets in a complete metric space X equipped with a doubling measure supporting a p-Poincare inequality with 1 < p < infinity, and connect them to the Sobolev theory in R-n. In particular, we show that for quasiopen subsets of R-n the Newtonian functions, which are naturally defined in any metric space, coincide with the quasicontinuous representatives of the Sobolev functions studied by Kilpelainen and Maly in 1992.
引用
收藏
页码:551 / 560
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 2015, SOBOLEV SPACES METRI
[2]  
[Anonymous], EMS TRACTS MATH
[3]  
Björn A, 2008, HOUSTON J MATH, V34, P1197
[4]  
BJORN A., 2015, PREPRINT
[5]  
Bjorn A., J ANAL MATH IN PRESS
[6]   The Weak Cartan Property for the p-fine Topology on Metric Spaces [J].
Bjorn, Anders ;
Bjorn, Jana ;
Latvala, Visa .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (03) :915-941
[7]   Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology [J].
Bjorn, Anders ;
Bjorn, Jana .
REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (01) :161-214
[8]   Fine continuity on metric spaces [J].
Bjorn, Jana .
MANUSCRIPTA MATHEMATICA, 2008, 125 (03) :369-381
[9]   CONNECTEDNESS IN FINE TOPOLOGIES [J].
HEINONEN, J ;
KILPELAINEN, T ;
MALY, J .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1990, 15 (01) :107-123
[10]  
Heinonen J., 2006, Nonlinear Potential Theory of Degenerate Elliptic Equations