Nonlinear Phillips curves in the Euro Area and USA? Evidence from linear and neural network models

被引:4
|
作者
McNelis, PD [1 ]
机构
[1] Georgetown Univ, Dept Econ, Washington, DC 20057 USA
来源
2003 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, PROCEEDINGS | 2003年
关键词
neural networks; Phillips curve; out-of-sample forecasting;
D O I
10.1109/CIFER.2003.1196254
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper applies neural network methodology to inflation forecasting in the Euro-area and the USA. Neural network methodology outperforms linear forecasting methods for the Euro Area at forecast horizons of one, three, and six month horizons, while the linear model is preferable for US data. The nonlinear estimation shows that unemployment is a significant predictor of inflation for the Euro Area. Neither model detects a significant effect of unemployment on inflation for the US data.
引用
收藏
页码:145 / 149
页数:5
相关论文
共 50 条
  • [41] Regularization and validation of neural network models of nonlinear systemsRegelung und Zuverlässigkeitsprüfung von Neuromodellen nichtlinearer Systeme
    I. Petrović
    M. Baotić
    N. Perić
    e & i Elektrotechnik und Informationstechnik, 2000, 117 (1) : 24 - 31
  • [42] Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation
    Raja, Muhammad Asif Zahoor
    Samar, Raza
    Rashidi, Mohammad Mehdi
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8) : 1585 - 1601
  • [43] Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation
    Muhammad Asif Zahoor Raja
    Raza Samar
    Mohammad Mehdi Rashidi
    Neural Computing and Applications, 2014, 25 : 1585 - 1601
  • [44] Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data
    D. D. Alexakis
    I. K. Tsanis
    Environmental Earth Sciences, 2016, 75
  • [45] The prediction of elongation and recovery of woven bi-stretch fabric using artificial neural network and linear regression models
    The University of Cukurova, Department of Industrial Engineering, 01330 Adana, Turkey
    不详
    Fibres Text. East. Eur., 2006, 2 (46-49):
  • [46] Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data
    Alexakis, D. D.
    Tsanis, I. K.
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (14)
  • [47] Diagnosing breast cancer from FNAs: Variable relevance in neural network and logistic regression models
    Ohno-Machado, L
    Bialek, D
    MEDINFO '98 - 9TH WORLD CONGRESS ON MEDICAL INFORMATICS, PTS 1 AND 2, 1998, 52 : 537 - 540
  • [48] Predicting lecithin concentration from differential mobility spectrometry measurements with linear regression models and neural networks
    Anttalainen, Anna
    Makela, Meri
    Kumpulainen, Pekka
    Vehkaoja, Antti
    Anttalainen, Osmo
    Oksala, Niku
    Roine, Antti
    TALANTA, 2021, 225
  • [49] Predicting the tensile properties of cotton/spandex core-spun yarns using artificial neural network and linear regression models
    Almetwally, Alsaid Ahmed
    Idrees, Hatim M. F.
    Hebeish, Ali Ali
    JOURNAL OF THE TEXTILE INSTITUTE, 2014, 105 (11) : 1221 - 1229
  • [50] Neural Network-based Lyapunov Stability Verification for Continuous-time Nonlinear Systems via Mixed Integer Linear Programming
    Wang, Jingya
    Yu, Yongbin
    Wang, Xiangxiang
    Feng, Xiao
    Han, Xinyi
    Cai, Jingye
    2024 9TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING, ICCRE 2024, 2024, : 247 - 252