Nonlinear Phillips curves in the Euro Area and USA? Evidence from linear and neural network models

被引:4
|
作者
McNelis, PD [1 ]
机构
[1] Georgetown Univ, Dept Econ, Washington, DC 20057 USA
来源
2003 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, PROCEEDINGS | 2003年
关键词
neural networks; Phillips curve; out-of-sample forecasting;
D O I
10.1109/CIFER.2003.1196254
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper applies neural network methodology to inflation forecasting in the Euro-area and the USA. Neural network methodology outperforms linear forecasting methods for the Euro Area at forecast horizons of one, three, and six month horizons, while the linear model is preferable for US data. The nonlinear estimation shows that unemployment is a significant predictor of inflation for the Euro Area. Neither model detects a significant effect of unemployment on inflation for the US data.
引用
收藏
页码:145 / 149
页数:5
相关论文
共 50 条
  • [21] A hybrid nonlinear autoregressive neural network for permanent-magnet linear synchronous motor identification
    Gang, L
    Yu, F
    ICEMS 2005: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 2005, : 310 - 314
  • [22] Recovering shear stiffness degradation curves from classification data with a neural network approach
    Jared A. Charles
    Susan Gourvenec
    Mark E. Vardy
    Acta Geotechnica, 2023, 18 : 5619 - 5633
  • [23] Recovering shear stiffness degradation curves from classification data with a neural network approach
    Charles, Jared A.
    Gourvenec, Susan
    Vardy, Mark E.
    ACTA GEOTECHNICA, 2023, 18 (10) : 5619 - 5633
  • [24] Nonlinear model predictive control based on radial basis neural network models for constrained systems
    Vilaça, AC
    Murata, VV
    Henrique, HM
    LATIN AMERICAN APPLIED RESEARCH, 2001, 31 (04) : 267 - 274
  • [25] Forecasting economic growth using financial variables - Comparison of linear regression and neural network models
    Marijana, Curak
    Poposki, Klime
    Ivan, Curak
    MICBE '09: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN BUSINESS AND ECONOMICS, 2009, : 255 - +
  • [26] Linear and Neural Network-based Models for Short-Term Heat Load Forecasting
    Potocnik, Primoz
    Strmcnik, Ervin
    Govekar, Edvard
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2015, 61 (09): : 543 - 550
  • [27] A Semi-Parametric Non-linear Neural Network Filter: Theory and Empirical Evidence
    Michaelides, Panayotis G.
    Tsionas, Efthymios G.
    Vouldis, Angelos T.
    Konstantakis, Konstantinos N.
    Patrinos, Panagiotis
    COMPUTATIONAL ECONOMICS, 2018, 51 (03) : 637 - 675
  • [28] A Semi-Parametric Non-linear Neural Network Filter: Theory and Empirical Evidence
    Panayotis G. Michaelides
    Efthymios G. Tsionas
    Angelos T. Vouldis
    Konstantinos N. Konstantakis
    Panagiotis Patrinos
    Computational Economics, 2018, 51 : 637 - 675
  • [29] System Identification for Block-Ice Process: Comparison Between Linear and Neural Network Models
    Le Hai, Minh
    Banjerdpongchai, David
    2008 10TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION: ICARV 2008, VOLS 1-4, 2008, : 1655 - 1660
  • [30] Knowledge extraction from trained neural network river flow models
    Sudheer, KP
    JOURNAL OF HYDROLOGIC ENGINEERING, 2005, 10 (04) : 264 - 269