Recent advances in CO2 capture and reduction

被引:61
|
作者
Wei, Kecheng [1 ]
Guan, Huanqin [1 ]
Luo, Qiang [2 ]
He, Jie [2 ,3 ]
Sun, Shouheng [1 ]
机构
[1] Brown Univ, Dept Chem, Providence, RI 02912 USA
[2] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[3] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
关键词
METAL-ORGANIC FRAMEWORK; GAS SHIFT REACTION; CARBON-DIOXIDE CAPTURE; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC REDUCTION; METHANOL SYNTHESIS; ACTIVE-SITE; HYDROGENATION; CONVERSION; CATALYSTS;
D O I
10.1039/d2nr02894h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Given the continuous and excessive CO2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO2 to value-added chemicals. This review highlights recent advances in CO2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO2 conversion reaction: thermochemical CO2 hydrogenation and electrochemical CO2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H-2, electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst-electrolyte interfaces. The review further covers recent studies in integrating CO2 capture and conversion processes so that energy efficiency for the overall CO2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO2 conversion technologies as solutions to negative carbon emission and energy sustainability.
引用
收藏
页码:11869 / 11891
页数:23
相关论文
共 50 条
  • [21] Recent Advances in Metal-Organic Frameworks for Photo-/Electrocatalytic CO2 Reduction
    Wang, Qingqing
    Zhang, Yao
    Lin, Huijuan
    Zhu, Jixin
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (62) : 14026 - 14035
  • [22] Recent advances in intermediate-temperature CO2 capture: Materials, technologies and applications
    Zhao, Chengbo
    Wang, Leiming
    Huang, Liang
    Musyoka, Nicholas M.
    Xue, Tianshan
    Rabeah, Jabor
    Wang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2024, 90 : 435 - 452
  • [23] Recent advances in gas hydrate-based CO2 capture
    Dashti, Hossein
    Yew, Leonel Zhehao
    Lou, Xia
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 23 : 195 - 207
  • [24] A review on the recent advances in composite membranes for CO2 capture processes
    Dai, Yangyang
    Niu, Zhenhua
    Luo, Wenjia
    Wang, Yuanyuan
    Mu, Peng
    Li, Jian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 307
  • [25] Recent advances in the synthesis of covalent organic frameworks for CO2 capture
    Olajire, Abass A.
    JOURNAL OF CO2 UTILIZATION, 2017, 17 : 137 - 161
  • [26] MXenes as Electrocatalysts for the CO2 Reduction Reaction: Recent Advances and Future Challenges
    Meng, Ling
    Tayyebi, Ebrahim
    Exner, Kai S.
    Vines, Francesc
    Illas, Francesc
    CHEMELECTROCHEM, 2024, 11 (05)
  • [27] Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
    Shang, Ziang
    Feng, Xueting
    Chen, Guanzhen
    Qin, Rong
    Han, Yunhu
    SMALL, 2023, 19 (48)
  • [28] Recent Advances in Porous Materials for Photocatalytic CO2 Reduction
    Xiong, Hailong
    Dong, Yueyue
    Liu, Dong
    Long, Ran
    Kong, Tingting
    Xiong, Yujie
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (05) : 1272 - 1282
  • [29] Recent advances in biochar-based adsorbents for CO2 capture
    Guo, Shifang
    Li, Yuqing
    Wang, Yaru
    Wang, Linna
    Sun, Yifei
    Liu, Lina
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 4
  • [30] Recent advances on bismuth oxyhalides for photocatalytic CO2 reduction
    Xu, Liangpang
    Yu, Jimmy C.
    Wang, Ying
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 140 (183-203): : 183 - 203