Recent advances in CO2 capture and reduction

被引:61
|
作者
Wei, Kecheng [1 ]
Guan, Huanqin [1 ]
Luo, Qiang [2 ]
He, Jie [2 ,3 ]
Sun, Shouheng [1 ]
机构
[1] Brown Univ, Dept Chem, Providence, RI 02912 USA
[2] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[3] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
关键词
METAL-ORGANIC FRAMEWORK; GAS SHIFT REACTION; CARBON-DIOXIDE CAPTURE; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC REDUCTION; METHANOL SYNTHESIS; ACTIVE-SITE; HYDROGENATION; CONVERSION; CATALYSTS;
D O I
10.1039/d2nr02894h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Given the continuous and excessive CO2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO2 to value-added chemicals. This review highlights recent advances in CO2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO2 conversion reaction: thermochemical CO2 hydrogenation and electrochemical CO2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H-2, electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst-electrolyte interfaces. The review further covers recent studies in integrating CO2 capture and conversion processes so that energy efficiency for the overall CO2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO2 conversion technologies as solutions to negative carbon emission and energy sustainability.
引用
收藏
页码:11869 / 11891
页数:23
相关论文
共 50 条
  • [1] Electrochemical reduction of CO2 to useful fuel: recent advances and prospects
    Kumar, Abhishek
    Aeshala, Leela Manohar
    Palai, Tapas
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (07) : 1295 - 1319
  • [2] Recent Advances of Porous Solids for Ultradilute CO2 Capture
    Liu Ru-Shuai
    Xu Shuang
    Hao Guang-Ping
    Lu An-Hui
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (01): : 18 - 30
  • [3] Recent Progress in Electrocatalytic Reduction of CO2
    Ren, Chaojun
    Ni, Wei
    Li, Hongda
    CATALYSTS, 2023, 13 (04)
  • [4] Recent advances in solar-driven photothermal nanostructured materials for CO2 reduction: A review
    Pan, Deng
    Wang, Yanan
    Liang, Qian
    Zhou, Man
    Li, Xiazhang
    Xu, Song
    Li, Zhongyu
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (04):
  • [5] Recent advances in polymeric membranes for CO2 capture
    Han, Yang
    Ho, W. S. Winston
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (11) : 2238 - 2254
  • [6] Recent advances in electrochemical reduction of CO2
    Zhang, Fengtao
    Zhang, Hongye
    Liu, Zhimin
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 77 - 84
  • [7] Recent Advances in Indium Oxide Based Nanocatalysts for Selective Hydrogenation of CO2
    Liu Hanlin
    Yin Linlin
    Chen Xifeng
    Li Guodong
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (05): : 1430 - 1445
  • [8] Recent advances in development of amine functionalized adsorbents for CO2 capture
    Gelles, Teresa
    Lawson, Shane
    Rownaghi, Ali A.
    Rezaei, Fateme
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2020, 26 (01): : 5 - 50
  • [9] Advances in electrolyzer design and development for electrochemical CO2 reduction
    He, Ruinan
    Xu, Nengneng
    Ul Hasan, Israr Masood
    Peng, Luwei
    Li, Lulu
    Huang, Haitao
    Qiao, Jinli
    ECOMAT, 2023, 5 (07)
  • [10] Recent Advances in CO2 Capture by Functionalized Ionic Liquids
    Pan, Mingguang
    Wang, Congmin
    ADVANCES IN CO2 CAPTURE, SEQUESTRATION, AND CONVERSION, 2015, 1194 : 341 - 369