3-D Microfabricated Electrodes for Targeted Deep Brain Stimulation

被引:3
|
作者
Laotaveerungrueng, Noppasit [1 ]
Lin, Chia-Hua [1 ]
McCallum, Grant [1 ]
Rajgopal, Srihari [1 ]
Steiner, Charles P. [2 ]
Rezai, Ali R. [2 ]
Mehregany, Mehran [1 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
[2] Cleveland Clin, Cleveland, OH 44195 USA
关键词
SUBTHALAMIC NUCLEUS; IMPEDANCE;
D O I
10.1109/IEMBS.2009.5333591
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This work presents a novel 4-sided, 16-channel deep brain stimulation electrode with a custom flexible high-density lead for connectivity with pulse generation electronics. The 3-dimensional electrode enables steering the current field circumferentially. The electrode is fabricated in pieces by micromachining and microfabrication techniques; the pieces are then assembled mechanically to form the electrode, after which the lead is connected. The electrode is modeled by finite element analysis and tested in vitro to validate the design concept, i.e., targeted stimulation. Simulation and experimental results for a targeted stimulation show close agreement. With a symmetric bipolar stimulation configuration, within a 3 mm radius, the electric potential in front of the activated side is at least 3.6 times larger than that on the corresponding two adjacent, not-activated sides, and 9 times larger than the corresponding opposite, not-activated side.
引用
收藏
页码:6493 / +
页数:2
相关论文
共 50 条
  • [31] Microfabricated polymeric vessel mimetics for 3-D cancer cell culture
    Jaeger, Ashley A.
    Das, Chandan K.
    Morgan, Nicole Y.
    Pursley, Randall H.
    McQueen, Philip G.
    Hall, Matthew D.
    Pohida, Thomas J.
    Gottesman, Michael M.
    BIOMATERIALS, 2013, 34 (33) : 8301 - 8313
  • [32] 3-D view of the brain
    Sauser, Brittany
    TECHNOLOGY REVIEW, 2007, 110 (06): : 16 - 16
  • [33] Comparison of methodologies for modeling directional deep brain stimulation electrodes
    Frankemolle-Gilbert, Anneke M.
    Howell, Bryan
    Bower, Kelsey L.
    Veltink, Peter H.
    Heida, Tjitske
    McIntyre, Cameron C.
    PLOS ONE, 2021, 16 (12):
  • [34] Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo
    Wei, Xuefeng F.
    Grill, Warren M.
    JOURNAL OF NEURAL ENGINEERING, 2009, 6 (04)
  • [35] Iterative Electrodes Increase Neural Recruitment for Deep Brain Stimulation
    Wei, Xuefeng F.
    Iyengar, Naina
    DeMaria, Andrew H.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 3419 - 3422
  • [36] Frameless placment of deep brain stimulation electrodes: An accuracy study
    Henderson, JM
    Holloway, KL
    Gaede, SE
    Rosenow, JM
    Csavoy, A
    MOVEMENT DISORDERS, 2004, 19 : S302 - S302
  • [37] In-vitro thermocoagulation using deep brain stimulation electrodes
    Alesch, F.
    Hauska, T.
    MOVEMENT DISORDERS, 2008, 23 (01) : S387 - S388
  • [38] Choosing electrodes for deep brain stimulation experiments - electrochemical considerations
    Gimsa, J
    Habel, B
    Schreiber, U
    van Rienen, U
    Strauss, U
    Gimsa, U
    JOURNAL OF NEUROSCIENCE METHODS, 2005, 142 (02) : 251 - 265
  • [39] Implantation of deep brain stimulation electrodes in unshaved patients - Response
    Miyagi, Y
    Shima, F
    Ishido, K
    JOURNAL OF NEUROSURGERY, 2003, 99 (01) : 208 - 209
  • [40] Intracranial hemorrhage after removal of deep brain stimulation electrodes
    Liu, James K. C.
    Soliman, Hesham
    Machado, Andre
    Deogaonkar, Milind
    Rezai, Ali R.
    JOURNAL OF NEUROSURGERY, 2012, 116 (03) : 525 - 528