Graph Learning with Laplacian Constraints: Modeling Attractive Gaussian Markov Random Fields

被引:0
作者
Fgilmez, Hilmi E. [1 ]
Pavez, Eduardo [1 ]
Ortega, Antonio [1 ]
机构
[1] Univ Southern Calif, Signal & Image Proc Inst, Los Angeles, CA 90089 USA
来源
2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS | 2016年
关键词
Graph learning; sparse graph learning; graph estimation; optimization; graph Laplacian matrices; Gaussian Markov random fields (GMRFs); VARIABLE SELECTION; LASSO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graphs are fundamental mathematical structures used in various fields to represent data, signals and processes. This paper proposes a novel framework for learning graphs from data. The proposed framework (i) poses the graph learning problem as estimation of generalized graph Laplacian matrices and (ii) develops an efficient algorithm. Under specific statistical assumptions, the proposed formulation leads to modeling attractive Gaussian Markov random fields. Our experimental results show that the proposed algorithm outperforms sparse inverse covariance estimation methods in terms of graph learning performance.
引用
收藏
页码:1470 / 1474
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 1999, Athena scientific Belmont
[2]  
[Anonymous], 2005, GAUSSIAN MARKOV RAND
[3]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[4]  
Boyd S, 2004, CONVEX OPTIMIZATION
[5]  
Chen D., 2009, S BIRTH NUM AN WORLD S BIRTH NUM AN WORLD
[6]  
Duchi J., 2008, P 24 C UNC AI UAI
[7]  
Egilmez H.E., 2016, CoRR, Vabs/1611.05181v1
[8]   Sparse inverse covariance estimation with the graphical lasso [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Robert .
BIOSTATISTICS, 2008, 9 (03) :432-441
[9]   Spike and slab variable selection: Frequentist and Bayesian strategies [J].
Ishwaran, H ;
Rao, JS .
ANNALS OF STATISTICS, 2005, 33 (02) :730-773
[10]  
Koller D, 2009, Probabilistic graphical models: principles and techniques