Asymptotic states of a Smoluchowski equation

被引:58
作者
Constantin, P [1 ]
Kevrekidis, IG
Titi, ES
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[5] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
D O I
10.1007/s00205-004-0331-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the high-concentration asymptotics of steady states of a Smoluchowski equation arising in the modeling of nematic liquid crystalline polymers.
引用
收藏
页码:365 / 384
页数:20
相关论文
共 19 条
[1]   Diffusion, attraction and collapse [J].
Brenner, MP ;
Constantin, P ;
Kadanoff, LP ;
Schenkel, A ;
Venkataramani, SC .
NONLINEARITY, 1999, 12 (04) :1071-1098
[2]  
CONSTANTIN P, 1993, PHYS REV, V47, P593
[3]  
CONSTANTIN P, 2004, IN PRESS DISCRETE CO
[4]  
DOI M, 1981, J POLYM SCI POL PHYS, V19, P229, DOI 10.1002/pol.1981.180190205
[5]   The rigid-rod model for nematic polymers: An analysis of the shear flow problem [J].
Faraoni, V ;
Grosso, M ;
Crescitelli, S ;
Maffettone, PL .
JOURNAL OF RHEOLOGY, 1999, 43 (03) :829-843
[6]  
FOREST G, 2003, SCALING BEHAV KINETI
[7]  
FOREST G, 2003, WEAK SHEAR KINETIC P
[8]   Monodomain response of finite-aspect-ratio macromolecules in shear and related linear flows [J].
Forest, MG ;
Wang, Q .
RHEOLOGICA ACTA, 2003, 42 (1-2) :20-46
[9]  
Helgason S., 1978, DIFFERENTIAL GEOMETR
[10]   A method for multiscale simulation of flowing complex fluids [J].
Jendrejack, RM ;
de Pablo, JJ ;
Graham, MD .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2002, 108 (1-3) :123-142