PBW deformations of Koszul algebras over a nonsemisimple ring

被引:4
作者
He, Ji-Wei [1 ]
Van Oystaeyen, Fred [2 ]
Zhang, Yinhuo [3 ]
机构
[1] Shaoxing Coll Arts & Sci, Dept Math, Shaoxing 312000, Zhejiang, Peoples R China
[2] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[3] Univ Hasselt, Dept WNI, B-3590 Diepenbeek, Belgium
关键词
Generalized Koszul algebra; PBW deformation; Bimodule Koszul resolution; Artin-Schelter Gorenstein algebra; DUALITY;
D O I
10.1007/s00209-014-1362-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a generalized Koszul algebra over a finite dimensional algebra . We construct a bimodule Koszul resolution of when the projective dimension of equals two. Using this we prove a Poincar,-Birkhoff-Witt (PBW) type theorem for a deformation of a generalized Koszul algebra. When the projective dimension of is greater than two, we construct bimodule Koszul resolutions for generalized smash product algebras obtained from braidings between finite dimensional algebras and Koszul algebras, and then prove the PBW type theorem. The results obtained can be applied to standard Koszul Artin-Schelter Gorenstein algebras in the sense of Minamoto and Mori (Adv Math 226:4061-4095, 2011).
引用
收藏
页码:185 / 210
页数:26
相关论文
共 24 条
[1]  
[Anonymous], 2005, Univ. Lecture Ser.
[2]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[3]   Poincare-Birkhoff-Witt theorem for quadratic algebras of Koszul type [J].
Braverman, A ;
Gaitsgory, D .
JOURNAL OF ALGEBRA, 1996, 181 (02) :315-328
[4]  
Caenepeel S., 2002, Lecture Notes in Mathematics, V1787
[5]   Noncommutative deformations of Kleinian singularities [J].
Crawley-Boevey, W ;
Holland, MP .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) :605-635
[6]   Non-commutative Castelnuovo-Mumford regularity and AS-regular algebras [J].
Dong, Z. -C. ;
Wu, Q. -S. .
JOURNAL OF ALGEBRA, 2009, 322 (01) :122-136
[7]   Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism [J].
Etingof, P ;
Ginzburg, V .
INVENTIONES MATHEMATICAE, 2002, 147 (02) :243-348
[8]  
Green E.L., 2002, MEMOIRS AM MATH SOC, V754
[9]   Universal deformation formulas and braided module algebras [J].
Guccione, Jorge A. ;
Guccione, Juan J. ;
Valqui, Christian .
JOURNAL OF ALGEBRA, 2011, 330 (01) :263-297
[10]  
Li L., ARXIV11095760