The structure of bow shocks formed by the interaction of pulsed-power driven magnetised plasma flows with conducting obstacles

被引:21
作者
Burdiak, G. C. [1 ]
Lebedev, S. V. [1 ]
Bland, S. N. [1 ]
Clayson, T. [1 ]
Hare, J. [1 ]
Suttle, L. [1 ]
Suzuki-Vidal, F. [1 ]
Garcia, D. C. [1 ]
Chittenden, J. P. [1 ]
Bott-Suzuki, S. [2 ]
Ciardi, A. [3 ,4 ]
Frank, A. [5 ]
Lane, T. S. [6 ]
机构
[1] Imperial Coll London, Blackett Lab, London SW7 2BW, England
[2] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] UPMC Univ Paris 6, Sorbonne Univ, UMR 8112, LERMA, F-75005 Paris, France
[4] PSL Res Univ, LERMA, Observ Paris, CNRS,UMR 8112, F-75014 Paris, France
[5] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[6] West Virgina Univ, Morgantown, WV 26506 USA
基金
英国工程与自然科学研究理事会;
关键词
SIMULATIONS; FIELDS;
D O I
10.1063/1.4993187
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an experimental study of the development and structure of bow shocks produced by the interaction of a magnetised, collisional, super-Alfvenic plasma flow with conducting cylindrical obstacles. The plasma flow with an embedded, frozen-in magnetic field (Re-M similar to 20) is produced by the current-driven ablation of fine aluminium wires in an inverse, exploding wire array z-pinch. We show that the orientation of the embedded field with respect to the obstacles has a dramatic effect on the bow shock structure. When the field is aligned with the obstacle, a sharp bow shock is formed with a global structure that is determined simply by the fast magneto-sonic Mach number. When the field is orthogonal to the obstacle, magnetic draping occurs. This leads to the growth of a magnetic precursor and the subsequent development of a magnetised bow shock that is mediated by two-fluid effects, with an opening angle and a stand-off distance, that are both many times larger than in the parallel geometry. By changing the field orientation, we change the fluid regime and physical mechanisms that are responsible for the development of the bow shocks. MHD simulations show good agreement with the structure of well-developed bow shocks. However, collisionless, two-fluid effects will need to be included within models to accurately reproduce the development of the shock with an orthogonal B-field. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
    Albertazzi, B.
    Ciardi, A.
    Nakatsutsumi, M.
    Vinci, T.
    Beard, J.
    Bonito, R.
    Billette, J.
    Borghesi, M.
    Burkley, Z.
    Chen, S. N.
    Cowan, T. E.
    Herrmannsdoerfer, T.
    Higginson, D. P.
    Kroll, F.
    Pikuz, S. A.
    Naughton, K.
    Romagnani, L.
    Riconda, C.
    Revet, G.
    Riquier, R.
    Schlenvoigt, H. -P.
    Skobelev, I. Yu.
    Faenov, A. Ya.
    Soloviev, A.
    Huarte-Espinosa, M.
    Frank, A.
    Portugall, O.
    Pepin, H.
    Fuchs, J.
    [J]. SCIENCE, 2014, 346 (6207) : 325 - 328
  • [2] Bow shocks in ablated plasma streams for nested wire array z-pinches: A laboratory astrophysics testbed for radiatively cooled shocks
    Ampleford, D. J.
    Jennings, C. A.
    Hall, G. N.
    Lebedev, S. V.
    Bland, S. N.
    Bott, S. C.
    Suzuki-Vidal, F.
    Palmer, J. B. A.
    Chittenden, J. P.
    Cuneo, M. E.
    Frank, A.
    Blackman, E. G.
    Ciardi, A.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (05)
  • [3] 3D PIC SIMULATIONS OF COLLISIONLESS SHOCKS AT LUNAR MAGNETIC ANOMALIES AND THEIR ROLE IN FORMING LUNAR SWIRLS
    Bamford, R. A.
    Alves, E. P.
    Cruz, F.
    Kellett, B. J.
    Fonseca, R. A.
    Silva, L. O.
    Trines, R. M. G. M.
    Halekas, J. S.
    Kramer, G.
    Harnett, E.
    Cairns, R. A.
    Bingham, R.
    [J]. ASTROPHYSICAL JOURNAL, 2016, 830 (02)
  • [4] Investigation of radiative bow-shocks in magnetically accelerated plasma flows
    Bott-Suzuki, S. C.
    Bendixsen, L. S. Caballero
    Cordaro, S. W.
    Blesener, I. C.
    Hoyt, C. L.
    Cahill, A. D.
    Kusse, B. R.
    Hammer, D. A.
    Gourdain, P. A.
    Seyler, C. E.
    Greenly, J. B.
    Chittenden, J. P.
    Niasse, N.
    Lebedev, S. V.
    Ampleford, D. J.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (05)
  • [5] Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
    Chang, P. Y.
    Fiksel, G.
    Hohenberger, M.
    Knauer, J. P.
    Betti, R.
    Marshall, F. J.
    Meyerhofer, D. D.
    Seguin, F. H.
    Petrasso, R. D.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (03)
  • [6] Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions
    Chittenden, J. P.
    Appelbe, B. D.
    Manke, F.
    McGlinchey, K.
    Niasse, N. P. L.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (05)
  • [7] The evolution of magnetic tower jets in the laboratory
    Ciardi, A.
    Lebedev, S. V.
    Frank, A.
    Blackman, E. G.
    Chittenden, J. P.
    Jennings, C. J.
    Ampleford, D. J.
    Bland, S. N.
    Bott, S. C.
    Rapley, J.
    Hall, G. N.
    Suzuki-Vidal, F. A.
    Marocchino, A.
    Lery, T.
    Stehle, C.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (05)
  • [8] HOT SPOTS IN LASER PLASMAS
    CRAXTON, RS
    HAINES, MG
    [J]. PHYSICAL REVIEW LETTERS, 1975, 35 (20) : 1336 - 1339
  • [9] Draping of cluster magnetic fields over bullets and bubbles - Morphology and dynamic effects
    Dursi, L. J.
    Pfrommer, C.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 677 (02) : 993 - 1018
  • [10] MAGNETIC-FIELDS GENERATED BY THE RAYLEIGH-TAYLOR INSTABILITY
    EVANS, RG
    [J]. LASER AND PARTICLE BEAMS, 1986, 4 : 325 - 328