Step-wise algorithm for estimating multi-parameter of the ground and geothermal heat exchangers from thermal response tests

被引:21
作者
Li, Min [1 ]
Zhang, Liwen [1 ,2 ]
Liu, Gang [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Energy Bldg, Changsha 410083, Hunan, Peoples R China
[2] Thermal Management & IT & Edge Infrastruct Syst B, 55 3rd Keji Rd, Xian 710075, Peoples R China
基金
中国国家自然科学基金;
关键词
Ground heat exchangers; Thermal response tests; Composite-medium line-source solution; Parameter estimation; LINE-SOURCE MODEL; PARAMETER-ESTIMATION; TIME; CONDUCTIVITY; PERFORMANCE; PILE; SOIL;
D O I
10.1016/j.renene.2019.12.140
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes an innovative algorithm using the idea of step-wise to estimate of multiple parameters of the shallow ground and U-shaped geothermal heat exchangers. This procedure uses an infinite composite-medium line-source solution. The short-term solution not only enables testing data collected during short times (< 10 h) to be used in parameter estimation but also provides a feasible approach to estimating geometric parameters and thermal properties inside a borehole. The step-wise estimation consists of four stages: 1) determine soil thermal conductivity k(s), 2) estimate the thermal conductivity of grout k(b), 3) estimate the distance between centers of U-tube pipe D, the thermal diffusivities of soil and grout, a(s) and a(b), and 4) an iteration process if necessary. The outstanding feature of this step-wise algorithm is that the TRT data used in each step can be controlled separately, which can increase the accuracy of estimation because it alleviates the linear dependence among the sensitivities of parameters. It is shown that the accuracy of the estimates is ranked in descending order as follows: k(b) (+/- 1.0%), k(s) (+/- 2.0%), D (+/- 16.0%), a(s) (+/- 20.0%) and a(b) (+/- 70.0%). (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:435 / 442
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 1977, Parameter Estimation in Engineering and Science
[2]   Temperature measurements along a vertical borehole heat exchanger: A method comparison [J].
Aranzabal, Nordin ;
Martos, Julio ;
Steger, Hagen ;
Blum, Philipp ;
Soret, Jesus .
RENEWABLE ENERGY, 2019, 143 :1247-1258
[3]  
ASHRAE, ASHRAE HDB 2015 HVAC
[4]  
Austin W. A., 1998, ASHRAE T, V106, P365
[5]   Filter solutions for the nonlinear inverse heat conduction problem [J].
Beck, James V. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2008, 16 (01) :3-20
[6]   Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis [J].
Beier, Richard A. ;
Smith, Marvin D. ;
Spitler, Jeffrey D. .
GEOTHERMICS, 2011, 40 (01) :79-85
[7]   Estimation of soil and grout thermal properties through a TSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data [J].
Bozzoli, F. ;
Pagliarini, G. ;
Rainieri, S. ;
Schiavi, L. .
ENERGY, 2011, 36 (02) :839-846
[8]  
Choi W., 2017, APPL ENERGY, V209
[9]   Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method [J].
Choi, Wonjun ;
Ooka, Ryozo .
APPLIED ENERGY, 2015, 148 :476-488
[10]   A software tool for geostatistical analysis of thermal response test data: GA-TRT [J].
Focaccia, Sara ;
Tinti, Francesco ;
Bruno, Roberto .
COMPUTERS & GEOSCIENCES, 2013, 59 :163-170