Almost global attraction in planar systems

被引:21
作者
Monzón, P [1 ]
机构
[1] Fac Ingn, Inst Ingn Elect, Montevideo, Uruguay
关键词
planar systems; Poincare-Bendixson; almost global stability; monotone measures; global attraction;
D O I
10.1016/j.sysconle.2004.11.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we present a result relating the recent ideas of almost global stability and density functions with the classical Poincare-Bendixson theory for planar systems. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:753 / 758
页数:6
相关论文
共 12 条
[1]   Some remarks on density functions for dual Lyapunov methods [J].
Angeli, D .
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, :5080-5082
[2]  
ANGELI D, UNPUB T AUTOMAT CONT
[3]  
Khalil HK., 1992, NONLINEAR SYSTEMS
[4]   On necessary conditions for almost global stability [J].
Monzón, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (04) :631-634
[5]  
MONZON P, 2003, MONOTONE MEASURES GL
[6]  
Perko L., 2013, DIFFER EQUAT DYN SYS
[7]   Nonlinear control synthesis by convex optimization [J].
Prajna, S ;
Parrilo, PA ;
Rantzer, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (02) :310-314
[8]  
Rantzer A, 2002, IEEE DECIS CONTR P, P1890, DOI 10.1109/CDC.2002.1184801
[9]   A dual to Lyapunov's stability theorem [J].
Rantzer, A .
SYSTEMS & CONTROL LETTERS, 2001, 42 (03) :161-168
[10]  
RANTZER A, 2001, PORT EUR CONTR C SEP