Analysis of a Five-Port Differential Power Processing Triple Active Bridge Converter for Active Cell Balancing in Lithium-ion Battery Packs

被引:4
作者
Rasheed, Marium [1 ]
Wang, Hongjie [1 ]
Zane, Regan [1 ]
机构
[1] Utah State Univ, Elect & Comp Engn, Logan, UT 84341 USA
来源
2022 IEEE 23RD WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL 2022) | 2022年
基金
美国国家科学基金会;
关键词
differential power; triple active bridge converter; five port converter; battery management system; Li ion battery; active cell balancing; SYSTEM;
D O I
10.1109/COMPEL53829.2022.9829999
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel five-port differential power processing triple active bridge (DTAB) converter that provides active and hybrid cell balancing for lithium-ion battery packs. The proposed DTAB converter significantly reduces the modular active battery balancing system cost by reducing component count per active balancing output. Five ports are supported from one triple active bridge using center-tapped transformers with interleaving inductors. Active balancing is achieved by controlling the differential current injected into the mid-point of the cell sub-modules using pulse-width modulation. Traditional phase-shift modulation is used to regulate the power of the load bus. Converter operation, a decoupled steady-state analysis approach, and details of the proposed modulation scheme are provided. Simulation results for one five-port DTAB converter operated at 200 kHz that provides up to 350 W to a shared 15 V load bus using 4 series-connected 25 Ah NMC battery cells with mismatched cell voltages validate the converter operation.
引用
收藏
页数:8
相关论文
共 17 条
[1]   Production caused variation in capacity aging trend and correlation to initial cell performance [J].
Baumhoefer, Thorsten ;
Bruehl, Manuel ;
Rothgang, Susanne ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2014, 247 :332-338
[2]  
Ben-Yaakov S, 2012, IEEE ENER CONV, P4129, DOI 10.1109/ECCE.2012.6342262
[3]  
Biswas I, 2019, IEEE IND ELEC, P2050, DOI [10.1109/iecon.2019.8926843, 10.1109/IECON.2019.8926843]
[4]   A Novel Active Equalization Topology for Series-Connected Lithium-ion Battery Packs [J].
Ding, Xiaofeng ;
Zhang, Donghuai ;
Cheng, Jiawei ;
Wang, Binbin ;
Chai, Yameng ;
Zhao, Zhihui ;
Xiong, Rui ;
Luk, Partrick Chi Kwong .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (06) :6892-6903
[5]   Parallel Architecture for Battery Charge Equalization [J].
Dong, Bo ;
Li, Ye ;
Han, Yehui .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (09) :4906-4913
[6]   Origins and accommodation of cell variations in Li-ion battery pack modeling [J].
Dubarry, Matthieu ;
Vuillaume, Nicolas ;
Liaw, Bor Yann .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (02) :216-231
[7]   A Current Equalization Method for Serially Connected Battery Cells Using a Single Power Converter for Each Cell [J].
Einhorn, Markus ;
Guertlschmid, Wolfgang ;
Blochberger, Thomas ;
Kumpusch, Rupert ;
Permann, Robert ;
Conte, Fiorentino Valerio ;
Kral, Christian ;
Fleig, Juergen .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (09) :4227-4237
[8]   Active Balancing System for Electric Vehicles With Incorporated Low-Voltage Bus [J].
Evzelman, Michael ;
Rehman, M. Muneeb Ur ;
Hathaway, Kelly ;
Zane, Regan ;
Costinett, Daniel ;
Maksimovic, Dragan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (11) :7887-7895
[9]  
Mamede HR, 2015, IEEE ENER CONV, P6217, DOI 10.1109/ECCE.2015.7310532
[10]  
Plett GL, 2016, ART HOUSE POW ENG, P1