On-line inference for hidden Markov models via particle filters

被引:144
作者
Fearnhead, P [1 ]
Clifford, P
机构
[1] Univ Lancaster, Dept Math & Stat, Fylde Coll, Lancaster LA1 4YF, England
[2] Univ Oxford, Oxford, England
关键词
changepoints; ion channel; Kalman filter; Markov chain Monte Carlo methods; particle filters; smoothing; well-log data;
D O I
10.1111/1467-9868.00421
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the on-line Bayesian analysis of data by using a hidden Markov model, where inference is tractable conditional on the history of the state of the hidden component. A new particle filter algorithm is introduced and shown to produce promising results when analysing data of this type. The algorithm is similar to the mixture Kalman filter but uses a different resampling algorithm. We prove that this resampling algorithm is computationally efficient and optimal, among unbiased resampling algorithms, in terms of minimizing a squared error loss function. In a practical example, that of estimating break points from well-log data, our new particle filter outperforms two other particle filters, one of which is the mixture Kalman filter, by between one and two orders of magnitude.
引用
收藏
页码:887 / 899
页数:13
相关论文
共 25 条
[1]   RANDOM SAMPLING APPROACH TO STATE ESTIMATION IN SWITCHING ENVIRONMENTS [J].
AKASHI, H ;
KUMAMOTO, H .
AUTOMATICA, 1977, 13 (04) :429-434
[2]  
[Anonymous], 1996, NUMERICAL BAYESIAN M, DOI DOI 10.1007/978-1-4612-0717-7
[3]   STOCHASTIC-MODELS FOR ION CHANNELS - INTRODUCTION AND BIBLIOGRAPHY [J].
BALL, FG ;
RICE, JA .
MATHEMATICAL BIOSCIENCES, 1992, 112 (02) :189-206
[4]  
Blum M., 1973, Journal of Computer and System Sciences, V7, P448, DOI 10.1016/S0022-0000(73)80033-9
[5]   Improved particle filter for nonlinear problems [J].
Carpenter, J ;
Clifford, P ;
Fearnhead, P .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (01) :2-7
[6]   Mixture Kalman filters [J].
Chen, R ;
Liu, JS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :493-508
[7]  
Cormen T. H., 1996, Introduction to Algorithms, V3rd
[8]  
Doucet A., 2001, SEQUENTIAL MONTE CAR
[9]  
Durbin R., 1998, BIOL SEQUENCE ANAL P
[10]   Markov chain Monte Carlo, sufficient statistics, and particle filters [J].
Fearnhead, P .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (04) :848-862