Forcing for a Cascaded Lattice Boltzmann Shallow Water Model

被引:6
作者
Venturi, Sara [1 ]
Di Francesco, Silvia [2 ]
Geier, Martin [3 ]
Manciola, Piergiorgio [1 ]
机构
[1] Univ Perugia, Civil & Environm Dept, I-06125 Perugia Pg, Italy
[2] Niccola Cusano Univ, Engn Fac, I-00166 Rome, Italy
[3] TU Braunschweig, Inst Computat Modeling Civil Engn iRMB, D-38106 Braunschweig, Germany
关键词
shallow water equations; central moments; external force; SOURCE TERMS; EQUATIONS; SCHEMES; SIMULATION; FLOW;
D O I
10.3390/w12020439
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work compares three forcing schemes for a recently introduced cascaded lattice Boltzmann shallow water model: a basic scheme, a second -order scheme, and a centred scheme. Although the force is applied in the streaming step of the lattice Boltzmann model, the acceleration is also considered in the transformation to central moments. The model performance is tested for one and two dimensional benchmarks.
引用
收藏
页数:16
相关论文
共 38 条
  • [11] Characterization of a Flood Event through a Sediment Analysis: The Tescio River Case Study
    Di Francesco, Silvia
    Biscarini, Chiara
    Manciola, Piergiorgio
    [J]. WATER, 2016, 8 (07):
  • [12] Lattice Boltzmann Modeling of Diesel Spray Formation and Break-Up
    Falcucci, Giacomo
    Ubertini, Stefano
    Bella, Gino
    De Maio, Alessandro
    Palpacelli, Silvia
    [J]. SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS, 2010, 3 (01) : 582 - 593
  • [13] Geier M, 2006, THESIS
  • [14] Fourth order Galilean invariance for the lattice Boltzmann method
    Geier, Martin
    Pasquali, Andrea
    [J]. COMPUTERS & FLUIDS, 2018, 166 : 139 - 151
  • [15] The cumulant lattice Boltzmann equation in three dimensions: Theory and validation
    Geier, Martin
    Schoenherr, Martin
    Pasquali, Andrea
    Krafczyk, Manfred
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 507 - 547
  • [16] Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm
    LeVeque, RJ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) : 346 - 365
  • [17] Liu HE, 2009, THESIS
  • [18] Numerical simulation of transcritical flow in open channels
    Meselhe, EA
    Sotiropoulos, F
    Holly, FM
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (09): : 774 - 783
  • [19] Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments
    Premnath, Kannan N.
    Banerjee, Sanjoy
    [J]. PHYSICAL REVIEW E, 2009, 80 (03):
  • [20] Curved boundaries in multi-layer Shallow Water Lattice Boltzmann Methods: bounce back versus immersed boundary
    Prestininzi, P.
    Lombardi, V.
    La Rocca, M.
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2016, 16 : 16 - 28