Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models

被引:180
|
作者
Khabbazian, Mohammad [1 ]
Kriebel, Ricardo [2 ]
Rohe, Karl [3 ]
Ane, Cecile [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Engn Dr, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Bot, 30 Lincoln Dr, Madison, WI USA
[3] Univ Wisconsin, Dept Stat, 1300 Univ Ave, Madison, WI 53706 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2016年 / 7卷 / 07期
基金
美国国家科学基金会;
关键词
adaptation; convergent evolution; lasso; l1ou; phylogenetic Bayesian information criterion; phylogenetic comparative method; regularization; TRAIT EVOLUTION; R PACKAGE; STABILIZING SELECTION; PRINCIPAL COMPONENTS; REGRESSION; CONVERGENCE; RADIATIONS; DYNAMICS; RATES; SIZE;
D O I
10.1111/2041-210X.12534
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The detection of evolutionary shifts in trait evolution from extant taxa is motivated by the study of convergent evolution, or to correlate shifts in traits with habitat changes or with changes in other phenotypes. We propose here a phylogenetic lasso method to study trait evolution from comparative data and detect past changes in the expected mean trait values. We use the Ornstein-Uhlenbeck process, which can model a changing adaptive landscape over time and over lineages. Our method is very fast, running in minutes for hundreds of species, and can handle multiple traits. We also propose a phylogenetic Bayesian information criterion that accounts for the phylogenetic correlation between species, as well as for the complexity of estimating an unknown number of shifts at unknown locations in the phylogeny. This criterion does not suffer model overfitting and has high precision, so it offers a conservative alternative to other information criteria. Our re-analysis of Anolis lizard data suggests a more conservative scenario of morphological adaptation and convergence than previously proposed. Software is available on GitHub.
引用
收藏
页码:811 / 824
页数:14
相关论文
共 50 条
  • [41] Bayesian Data Analysis with the Bivariate Hierarchical Ornstein-Uhlenbeck Process Model
    Oravecz, Zita
    Tuerlinckx, Francis
    Vandekerckhove, Joachim
    MULTIVARIATE BEHAVIORAL RESEARCH, 2016, 51 (01) : 106 - 119
  • [42] The initial heat distribution problem associated with the Ornstein-Uhlenbeck and Hermite equations
    Flores, Guillermo J. J.
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (02)
  • [43] Robustness of STIRAP Shortcuts under Ornstein-Uhlenbeck Noise in the Energy Levels
    Stefanatos, Dionisis
    Blekos, Kostas
    Paspalakis, Emmanuel
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [44] Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation
    Janczura, Joanna
    Magdziarz, Marcin
    Metzler, Ralf
    CHAOS, 2023, 33 (10)
  • [45] A growth-fragmentation model related to Ornstein-Uhlenbeck type processes
    Shi, Quan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01): : 580 - 611
  • [46] MEASURES OF DEPENDENCE FOR ORNSTEIN-UHLENBECK PROCESSES WETH TEMPERED STABLE DISTRIBUTION
    Wylomanska, Agnieszka
    ACTA PHYSICA POLONICA B, 2011, 42 (10): : 2049 - 2062
  • [47] A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies
    Cooper, Natalie
    Thomas, Gavin H.
    Venditti, Chris
    Meade, Andrew
    Freckleton, Rob P.
    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2016, 118 (01) : 64 - 77
  • [48] DRIFT ESTIMATION OF THE THRESHOLD ORNSTEIN-UHLENBECK PROCESS FROM CONTINUOUS AND DISCRETE OBSERVATIONS
    Mazzonetto, Sara
    Pigato, Paolo
    STATISTICA SINICA, 2024, 34 (01) : 313 - 336
  • [49] A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process
    Wang, Weiming
    Cai, Yongli
    Ding, Zuqin
    Gui, Zhanji
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 921 - 936
  • [50] Ergodic aspects of some Ornstein-Uhlenbeck type processes related to Levy processes
    Bertoin, Jean
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (04) : 1443 - 1454