Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models

被引:180
|
作者
Khabbazian, Mohammad [1 ]
Kriebel, Ricardo [2 ]
Rohe, Karl [3 ]
Ane, Cecile [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Engn Dr, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Bot, 30 Lincoln Dr, Madison, WI USA
[3] Univ Wisconsin, Dept Stat, 1300 Univ Ave, Madison, WI 53706 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2016年 / 7卷 / 07期
基金
美国国家科学基金会;
关键词
adaptation; convergent evolution; lasso; l1ou; phylogenetic Bayesian information criterion; phylogenetic comparative method; regularization; TRAIT EVOLUTION; R PACKAGE; STABILIZING SELECTION; PRINCIPAL COMPONENTS; REGRESSION; CONVERGENCE; RADIATIONS; DYNAMICS; RATES; SIZE;
D O I
10.1111/2041-210X.12534
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The detection of evolutionary shifts in trait evolution from extant taxa is motivated by the study of convergent evolution, or to correlate shifts in traits with habitat changes or with changes in other phenotypes. We propose here a phylogenetic lasso method to study trait evolution from comparative data and detect past changes in the expected mean trait values. We use the Ornstein-Uhlenbeck process, which can model a changing adaptive landscape over time and over lineages. Our method is very fast, running in minutes for hundreds of species, and can handle multiple traits. We also propose a phylogenetic Bayesian information criterion that accounts for the phylogenetic correlation between species, as well as for the complexity of estimating an unknown number of shifts at unknown locations in the phylogeny. This criterion does not suffer model overfitting and has high precision, so it offers a conservative alternative to other information criteria. Our re-analysis of Anolis lizard data suggests a more conservative scenario of morphological adaptation and convergence than previously proposed. Software is available on GitHub.
引用
收藏
页码:811 / 824
页数:14
相关论文
共 50 条
  • [31] Quantitative mixing and dissipation enhancement property of Ornstein-Uhlenbeck flow
    Pappalettera, Umberto
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (12) : 2309 - 2340
  • [32] The unusual properties of aggregated superpositions of Ornstein-Uhlenbeck type processes
    Grahovac, Danijel
    Leonenko, Nikolai N.
    Sikorskii, Alla
    Taqqu, Murad S.
    BERNOULLI, 2019, 25 (03) : 2029 - 2050
  • [33] D-optimal designs for complex Ornstein-Uhlenbeck processes
    Baran, Sandor
    Szak-Kocsis, Csilla
    Stehlik, Milan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 197 : 93 - 106
  • [34] Integrated stationary Ornstein-Uhlenbeck process, and double integral processes
    Abundo, Mario
    Pirozzi, Enrica
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 265 - 275
  • [35] Fast mvSLOUCH: Multivariate Ornstein-Uhlenbeck-based models of trait evolution on large phylogenies
    Bartoszek, Krzysztof
    Tredgett Clarke, John
    Fuentes-Gonzalez, Jesualdo
    Mitov, Venelin
    Pienaar, Jason
    Piwczynski, Marcin
    Puchalka, Radoslaw
    Spalik, Krzysztof
    Voje, Kjetil Lysne
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (09): : 1507 - 1515
  • [36] A Calderon theorem for the poisson semigroups associated with the Ornstein-Uhlenbeck and Hermite operators
    Flores, Guillermo
    Viviani, Beatriz
    MATHEMATISCHE ANNALEN, 2023, 386 (1-2) : 329 - 342
  • [37] MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN-UHLENBECK MODEL OF ADAPTIVE EVOLUTION
    Beaulieu, Jeremy M.
    Jhwueng, Dwueng-Chwuan
    Boettiger, Carl
    O'Meara, Brian C.
    EVOLUTION, 2012, 66 (08) : 2369 - 2383
  • [38] Exploring Finite-Sized Scale Invariance in Stochastic Variability with Toy Models: The Ornstein-Uhlenbeck Model
    Chakraborty, Nachiketa
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 8
  • [39] Estimating the nonlinear effects of an ecological system driven by Ornstein-Uhlenbeck noise
    Tian, Meng-Yu
    Wang, Can-Jun
    Yang, Ke-Li
    Fu, Peng
    Xia, Chun-Yan
    Zhuo, Xiao-Jing
    Wang, Lei
    CHAOS SOLITONS & FRACTALS, 2020, 136
  • [40] Sparse inference of the drift of a high-dimensional Ornstein-Uhlenbeck process
    Gaiffas, Stephane
    Matulewicz, Gustaw
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 1 - 20