Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models

被引:180
|
作者
Khabbazian, Mohammad [1 ]
Kriebel, Ricardo [2 ]
Rohe, Karl [3 ]
Ane, Cecile [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Engn Dr, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Bot, 30 Lincoln Dr, Madison, WI USA
[3] Univ Wisconsin, Dept Stat, 1300 Univ Ave, Madison, WI 53706 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2016年 / 7卷 / 07期
基金
美国国家科学基金会;
关键词
adaptation; convergent evolution; lasso; l1ou; phylogenetic Bayesian information criterion; phylogenetic comparative method; regularization; TRAIT EVOLUTION; R PACKAGE; STABILIZING SELECTION; PRINCIPAL COMPONENTS; REGRESSION; CONVERGENCE; RADIATIONS; DYNAMICS; RATES; SIZE;
D O I
10.1111/2041-210X.12534
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The detection of evolutionary shifts in trait evolution from extant taxa is motivated by the study of convergent evolution, or to correlate shifts in traits with habitat changes or with changes in other phenotypes. We propose here a phylogenetic lasso method to study trait evolution from comparative data and detect past changes in the expected mean trait values. We use the Ornstein-Uhlenbeck process, which can model a changing adaptive landscape over time and over lineages. Our method is very fast, running in minutes for hundreds of species, and can handle multiple traits. We also propose a phylogenetic Bayesian information criterion that accounts for the phylogenetic correlation between species, as well as for the complexity of estimating an unknown number of shifts at unknown locations in the phylogeny. This criterion does not suffer model overfitting and has high precision, so it offers a conservative alternative to other information criteria. Our re-analysis of Anolis lizard data suggests a more conservative scenario of morphological adaptation and convergence than previously proposed. Software is available on GitHub.
引用
收藏
页码:811 / 824
页数:14
相关论文
共 50 条
  • [11] Using the Ornstein-Uhlenbeck process to model the evolution of interacting populations
    Bartoszek, Krzysztof
    Glemin, Sylvain
    Kaj, Ingemar
    Lascoux, Martin
    JOURNAL OF THEORETICAL BIOLOGY, 2017, 429 : 35 - 45
  • [12] Subdiffusive Ornstein-Uhlenbeck Processes and Applications to Finance
    Onalan, Omer
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL II, 2015, : 697 - 703
  • [13] The precise asymptotic behavior of parameter estimators in Ornstein-Uhlenbeck process
    Jiang, Hui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 367 - 382
  • [14] Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals
    Buonocore, A.
    Caputo, L.
    Nobile, A. G.
    Pirozzi, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 285 : 59 - 71
  • [15] Strong approximation rate for Wiener process by fast oscillating integrated Ornstein-Uhlenbeck processes
    Li, Junlin
    Fu, Hongbo
    He, Ziying
    Zhang, Yiwei
    CHAOS SOLITONS & FRACTALS, 2018, 113 : 314 - 325
  • [16] Nonspectral Relaxation in One Dimensional Ornstein-Uhlenbeck Processes
    Toenjes, R.
    Sokolov, I. M.
    Postnikov, E. B.
    PHYSICAL REVIEW LETTERS, 2013, 110 (15)
  • [17] Mean value formulas for Ornstein-Uhlenbeck and Hermite temperatures
    Flores, Guillermo
    Garrigos, Gustavo
    POSITIVITY, 2020, 24 (03) : 565 - 584
  • [18] Electronic dynamics in chains with Ornstein-Uhlenbeck correlated disorder
    Soares, J. L. S.
    dos Santos, R. D.
    Sousa, F. J. S.
    Sales, M. O.
    Moura, F. A. B. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (12):
  • [19] Distribution of the mean reversion estimator in the Ornstein-Uhlenbeck process
    Bao, Yong
    Ullah, Aman
    Wang, Yun
    ECONOMETRIC REVIEWS, 2017, 36 (6-9) : 1039 - 1056
  • [20] Cutoff phenomenon for the maximum of a sampling of Ornstein-Uhlenbeck processes
    Barrera, Gerardo
    STATISTICS & PROBABILITY LETTERS, 2021, 168