Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models

被引:180
|
作者
Khabbazian, Mohammad [1 ]
Kriebel, Ricardo [2 ]
Rohe, Karl [3 ]
Ane, Cecile [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Engn Dr, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Bot, 30 Lincoln Dr, Madison, WI USA
[3] Univ Wisconsin, Dept Stat, 1300 Univ Ave, Madison, WI 53706 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2016年 / 7卷 / 07期
基金
美国国家科学基金会;
关键词
adaptation; convergent evolution; lasso; l1ou; phylogenetic Bayesian information criterion; phylogenetic comparative method; regularization; TRAIT EVOLUTION; R PACKAGE; STABILIZING SELECTION; PRINCIPAL COMPONENTS; REGRESSION; CONVERGENCE; RADIATIONS; DYNAMICS; RATES; SIZE;
D O I
10.1111/2041-210X.12534
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The detection of evolutionary shifts in trait evolution from extant taxa is motivated by the study of convergent evolution, or to correlate shifts in traits with habitat changes or with changes in other phenotypes. We propose here a phylogenetic lasso method to study trait evolution from comparative data and detect past changes in the expected mean trait values. We use the Ornstein-Uhlenbeck process, which can model a changing adaptive landscape over time and over lineages. Our method is very fast, running in minutes for hundreds of species, and can handle multiple traits. We also propose a phylogenetic Bayesian information criterion that accounts for the phylogenetic correlation between species, as well as for the complexity of estimating an unknown number of shifts at unknown locations in the phylogeny. This criterion does not suffer model overfitting and has high precision, so it offers a conservative alternative to other information criteria. Our re-analysis of Anolis lizard data suggests a more conservative scenario of morphological adaptation and convergence than previously proposed. Software is available on GitHub.
引用
收藏
页码:811 / 824
页数:14
相关论文
共 50 条
  • [2] Intrinsic inference difficulties for trait evolution with Ornstein-Uhlenbeck models
    Ho, Lam Si Tung
    Ane, Cecile
    METHODS IN ECOLOGY AND EVOLUTION, 2014, 5 (11): : 1133 - 1146
  • [3] Model Selection Performance in Phylogenetic Comparative Methods Under Multivariate Ornstein-Uhlenbeck Models of Trait Evolution
    Bartoszek, Krzysztof
    Fuentes-Gonzalez, Jesualdo
    Mitov, Venelin
    Pienaar, Jason
    Piwczynski, Marcin
    Puchalka, Radoslaw
    Spalik, Krzysztof
    Voje, Kjetil Lysne
    SYSTEMATIC BIOLOGY, 2023, 72 (02) : 275 - 293
  • [4] Beyond Brownian Motion and the Ornstein-Uhlenbeck Process: Stochastic Diffusion Models for the Evolution of Quantitative Characters
    Blomberg, Simone P.
    Rathnayake, Suren, I
    Moreau, Cheyenne M.
    AMERICAN NATURALIST, 2020, 195 (02) : 145 - 165
  • [5] Bayesian Analyses of Comparative Data with the Ornstein-Uhlenbeck Model: Potential Pitfalls
    Cornuault, Josselin
    SYSTEMATIC BIOLOGY, 2022, 71 (06) : 1524 - 1540
  • [6] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Bai, Yizhou
    Wang, Yongjin
    Zhang, Haoyan
    Zhuo, Xiaoyang
    COMPUTATIONAL ECONOMICS, 2022, 60 (02) : 479 - 527
  • [7] Hypercyclic Semigroups Generated by Ornstein-Uhlenbeck Operators
    Conejero, Jose A.
    Mangino, Elisabetta M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (01) : 101 - 109
  • [8] Ergodic properties of generalized Ornstein-Uhlenbeck processes
    Kevei, Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (01) : 156 - 181
  • [9] Multimodality in systems driven by Ornstein-Uhlenbeck noise
    Dybiec, Bartlomiej
    CHAOS, 2024, 34 (11)
  • [10] Statistical mechanics of active Ornstein-Uhlenbeck particles
    Martin, David
    O'Byrne, Jeremy
    Cates, Michael E.
    Fodor, Etienne
    Nardini, Cesare
    Tailleur, Julien
    van Wijland, Frederic
    PHYSICAL REVIEW E, 2021, 103 (03)