SOME INEQUALITIES FOR COMMUTATORS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES

被引:2
作者
Dragomir, S. S. [1 ]
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
关键词
Bounded linear operators; Commutators; Cartesian decomposition; Accretive operators; POSITIVE OPERATORS;
D O I
10.2298/FIL1102151D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new inequalities for commutators that complement and in some instances improve recent results obtained by F. Kittaneh are given.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 50 条
[21]   Generalized numerical radius inequalities of operators in Hilbert spaces [J].
Feki, Kais .
ADVANCES IN OPERATOR THEORY, 2021, 6 (01)
[22]   Continuity of Bounded Linear Operators on Normed Linear Spaces [J].
Nakasho, Kazuhisa ;
Futa, Yuichi ;
Shidama, Yasunari .
FORMALIZED MATHEMATICS, 2018, 26 (03) :231-237
[23]   A note on Hardy spaces and bounded linear operators [J].
Rocha, Pablo .
GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (01) :73-76
[24]   SOME JENSEN'S TYPE INEQUALITIES FOR TWICE DIFFERENTIABLE FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES [J].
Dragomir, Sever S. .
FILOMAT, 2009, 23 (03) :211-222
[25]   Vector norm inequalities for power series of operators in Hilbert spaces [J].
Chenung, W. S. ;
Dragomir, S. S. .
TBILISI MATHEMATICAL JOURNAL, 2014, 7 (02) :21-34
[26]   Commutators of operators on Banach spaces [J].
Laustsen, NJ .
JOURNAL OF OPERATOR THEORY, 2002, 48 (03) :503-514
[27]   Some Jensen's Type Inequalities for Log-Convex Functions of Selfadjoint Operators in Hilbert Spaces [J].
Dragomir, S. S. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (03) :445-454
[28]   Perturbations of bounded linear operators on orthomodular Hilbertian spaces [J].
Keller, Hans A. ;
Ochsenius, Herminia .
ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2011, 551 :143-155
[29]   A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces [J].
Agarwal, R. P. ;
Dragomir, S. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) :3785-3812
[30]   Some generalizations of numerical radius inequalities for Hilbert space operators [J].
Yang, Chaojun .
SCIENCEASIA, 2021, 47 (03) :382-387