FULLY CONVOLUTIONAL SEMI-SUPERVISED GAN FOR POLSAR CLASSIFICATION

被引:0
作者
Liu, Mengchen [1 ]
Hu, Yue [1 ]
Wang, Shuang [1 ]
Guo, Yanhe [1 ]
Hou, Biao [1 ]
Jiao, Licheng [1 ]
Hou, Xiaojin [1 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ China, Xian 710071, Peoples R China
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
terrain classification; fully convolutional network; semi-supervised learning; generative adversarial network; SCATTERING MODEL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel semi-supervised fully convolutional network for Polarimetric synthetic aperture radar (PolSAR) terrain classification. First, by designing a fully convolutional structure, we can perform pixel-based classification tasks. Then, by applying semi-supervised generative adversarial networks (GANs), we utilize both labeled and unlabeled samples and aim to obtain higher classification accuracy. Through a mini-max two-player game, GAN has better performance than other "single-player" classifiers. Finally, we combine the fully convolutional structure with the semi-supervised GAN. Our fully convolutional semi-supervised GAN (FC-SGAN) has excellent spatial feature learning ability and can perform end-to-end pixel-based classification tasks. Experimental results show that compared with existing works, the proposed method has better performances. Even when the training set gets smaller, our method keeps high accuracy.
引用
收藏
页码:621 / 624
页数:4
相关论文
共 50 条
  • [21] EAC-GAN: Semi-supervised Image Enhancement Technology to Improve CNN Classification Performance
    Liu, Lihao
    Qiu, Zhao
    Lin, Jiale
    Li, Mengyang
    Liu, Qianfan
    Huang, Hancheng
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT II, 2022, 13339 : 360 - 372
  • [22] A semi-supervised convolutional neural network based on subspace representation for image classification
    Gatto, Bernardo B.
    Souza, Lincon S.
    dos Santos, Eulanda M.
    Fukui, Kazuhiro
    Junior, Waldir S. S.
    dos Santos, Kenny V.
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2020, 2020 (01)
  • [23] Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification
    Zhuang, Chenyi
    Ma, Qiang
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 499 - 508
  • [24] A semi-supervised convolutional neural network based on subspace representation for image classification
    Bernardo B. Gatto
    Lincon S. Souza
    Eulanda M. dos Santos
    Kazuhiro Fukui
    Waldir S. S. Júnior
    Kenny V. dos Santos
    EURASIP Journal on Image and Video Processing, 2020
  • [25] Multi-view Interaction Graph Convolutional Network for Semi-supervised Classification
    Wang, Yue-Tian
    Fu, Si-Chao
    Peng, Qin-Mu
    Zou, Bin
    Jing, Xiao-Yuan
    You, Xin-Ge
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (11): : 5098 - 5115
  • [26] Two-order Approximate Spectral Convolutional Model for Semi-Supervised Classification
    Gong P.-L.
    Ai L.-H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (05): : 1067 - 1076
  • [27] Determinate node selection for semi-supervised classification oriented graph convolutional networks
    Xiao, Yao
    Xu, Ji
    Yang, Jing
    Li, Shaobo
    Wang, Guoyin
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2025, 25 (01) : 1 - 10
  • [28] Semi-Supervised Encrypted Traffic Classification With Deep Convolutional Generative Adversarial Networks
    Iliyasu, Auwal Sani
    Deng, Huifang
    IEEE ACCESS, 2020, 8 : 118 - 126
  • [29] CCS-GAN: a semi-supervised generative adversarial network for image classification
    Lei Wang
    Yu Sun
    Zheng Wang
    The Visual Computer, 2022, 38 : 2009 - 2021
  • [30] CCS-GAN: a semi-supervised generative adversarial network for image classification
    Wang, Lei
    Sun, Yu
    Wang, Zheng
    VISUAL COMPUTER, 2022, 38 (06) : 2009 - 2021