Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant
被引:22
|
作者:
Khalid, Salman
论文数: 0引用数: 0
h-index: 0
机构:
Dongguk Univ, Dept Mech Robot & Energy Engn, 30 Pil Dong 1 Gil, Seoul 04620, South KoreaDongguk Univ, Dept Mech Robot & Energy Engn, 30 Pil Dong 1 Gil, Seoul 04620, South Korea
Khalid, Salman
[1
]
Hwang, Hyunho
论文数: 0引用数: 0
h-index: 0
机构:
Dongguk Univ, Dept Mech Robot & Energy Engn, 30 Pil Dong 1 Gil, Seoul 04620, South KoreaDongguk Univ, Dept Mech Robot & Energy Engn, 30 Pil Dong 1 Gil, Seoul 04620, South Korea
Hwang, Hyunho
[1
]
Kim, Heung Soo
论文数: 0引用数: 0
h-index: 0
机构:
Dongguk Univ, Dept Mech Robot & Energy Engn, 30 Pil Dong 1 Gil, Seoul 04620, South KoreaDongguk Univ, Dept Mech Robot & Energy Engn, 30 Pil Dong 1 Gil, Seoul 04620, South Korea
Kim, Heung Soo
[1
]
机构:
[1] Dongguk Univ, Dept Mech Robot & Energy Engn, 30 Pil Dong 1 Gil, Seoul 04620, South Korea
Due to growing electricity demand, developing an efficient fault-detection system in thermal power plants (TPPs) has become a demanding issue. The most probable reason for failure in TPPs is equipment (boiler and turbine) fault. Advance detection of equipment fault can help secure maintenance shutdowns and enhance the capacity utilization rates of the equipment. Recently, an intelligent fault diagnosis based on multivariate algorithms has been introduced in TPPs. In TPPs, a huge number of sensors are used for process maintenance. However, not all of these sensors are sensitive to fault detection. The previous studies just relied on the experts' provided data for equipment fault detection in TPPs. However, the performance of multivariate algorithms for fault detection is heavily dependent on the number of input sensors. The redundant and irrelevant sensors may reduce the performance of these algorithms, thus creating a need to determine the optimal sensor arrangement for efficient fault detection in TPPs. Therefore, this study proposes a novel machine-learning-based optimal sensor selection approach to analyze the boiler and turbine faults. Finally, real-world power plant equipment fault scenarios (boiler water wall tube leakage and turbine electric motor failure) are employed to verify the performance of the proposed model. The computational results indicate that the proposed approach enhanced the computational efficiency of machine-learning models by reducing the number of sensors up to 44% in the water wall tube leakage case scenario and 55% in the turbine motor fault case scenario. Further, the machine-learning performance is improved up to 97.6% and 92.6% in the water wall tube leakage and turbine motor fault case scenarios, respectively.
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Tou, Saori
Matsumoto, Koutarou
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Matsumoto, Koutarou
Hashinokuchi, Asato
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Surg & Sci, Fukuoka, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Hashinokuchi, Asato
Kinoshita, Fumihiko
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Surg & Sci, Fukuoka, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Kinoshita, Fumihiko
Nakaguma, Hideki
论文数: 0引用数: 0
h-index: 0
机构:
Saiseikai Kumamoto Hosp, Inst Med Informat Res & Anal, Kumamoto, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Nakaguma, Hideki
Kozuma, Yukio
论文数: 0引用数: 0
h-index: 0
机构:
Saiseikai Kumamoto Hosp, Inst Med Informat Res & Anal, Kumamoto, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Kozuma, Yukio
Sugeta, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Saiseikai Kumamoto Hosp, Inst Med Informat Res & Anal, Kumamoto, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Sugeta, Rui
Nohara, Yasunobu
论文数: 0引用数: 0
h-index: 0
机构:
Kumamoto Univ, Fac Adv Sci & Technol, Big Data Sci & Technol, Kumamoto, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Nohara, Yasunobu
Yamashita, Takanori
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ Hosp, Med Informat Ctr, Fukuoka, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Yamashita, Takanori
Wakata, Yoshifumi
论文数: 0引用数: 0
h-index: 0
机构:
Natl Hosp Org Kyushu Med Ctr, Hlth Informat Management Ctr, Fukuoka, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Wakata, Yoshifumi
Takenaka, Tomoyoshi
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Surg & Sci, Fukuoka, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Takenaka, Tomoyoshi
Iwatani, Kazunori
论文数: 0引用数: 0
h-index: 0
机构:
Saiseikai Kumamoto Hosp, Div Resp Surg, Kumamoto, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Iwatani, Kazunori
Soejima, Hidehisa
论文数: 0引用数: 0
h-index: 0
机构:
Saiseikai Kumamoto Hosp, Inst Med Informat Res & Anal, Kumamoto, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Soejima, Hidehisa
Yoshizumi, Tomoharu
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Surg & Sci, Fukuoka, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Yoshizumi, Tomoharu
Nakashima, Naoki
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ Hosp, Med Informat Ctr, Fukuoka, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Nakashima, Naoki
Kamouchi, Masahiro
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
Kyushu Univ, Ctr Cohort Studies, Grad Sch Med Sci, Fukuoka, JapanKyushu Univ, Grad Sch Med Sci, Dept Hlth Care Adm & Management, 3-1-1 Maidashi,Higashi Ku, Fukuoka 8128582, Japan
机构:
Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R China
Xihua Univ, Vehicle Measurement Control & Safety Key Lab Sich, Chengdu 610039, Peoples R ChinaJilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R China
Xu, Nan
Xie, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R ChinaJilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R China
Xie, Yu
Liu, Qiao
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R ChinaJilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R China
Liu, Qiao
Yue, Fenglai
论文数: 0引用数: 0
h-index: 0
机构:
Natl New Energy Vehicle Technol Innovat Ctr, Vehicle Energy Efficiency & Carbon Emiss Reduct E, Beijing 100176, Peoples R ChinaJilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R China
Yue, Fenglai
Zhao, Di
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R ChinaJilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R China