DSCALE_mod16: A Model for Disaggregating Microwave Satellite Soil Moisture with Land Surface Evapotranspiration Products and Gridded Meteorological Data

被引:13
作者
Sun, Hao [1 ]
Zhou, Baichi [1 ]
Zhang, Chuanjun [1 ]
Liu, Hongxing [2 ]
Yang, Bo [3 ]
机构
[1] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] Univ Alabama, Dept Geog, Tuscaloosa, AL 35487 USA
[3] Univ Cent Florida, Dept Sociol, Orlando, FL 32816 USA
基金
中国国家自然科学基金;
关键词
downscaling; soil moisture; DSCALE_mod16; Land surface Evaporative Efficiency (LEE); Soil Moisture Active and Passive (SMAP); TEMPERATURE; ALGORITHM; NETWORK; INDEX;
D O I
10.3390/rs12060980
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Improving the spatial resolution of microwave satellite soil moisture (SM) products is important for various applications. Most of the downscaling methods that fuse optical/thermal and microwave data rely on remotely sensed land surface temperature (LST) or LST-derived SM indexes (SMIs). However, these methods suffer from the problems of "cloud contamination", "decomposing uncertainty", and "decoupling effect". This study presents a new downscaling method, referred to as DSCALE_mod16, without using LST and LST-derived SMIs. This model combines MODIS ET products and a gridded meteorological data set to obtain Land surface Evaporative Efficiency (LEE) as the main downscaling factor. A cosine-square form of downscaling function was adopted to represent the quantitative relationship between LEE and SM. Taking the central part of the United States as the case study area, we downscaled SMAP (Soil Moisture Active and Passive) SM products with an original resolution of 36km to a resolution of 500m. The study period spans more than three years from 2015 to 2018. In situ SM measurements from three sparse networks and three core validation sites (CVS) were used to evaluate the downscaling model. The evaluation results indicate that the downscaled SM values maintain the spatial dynamic range of original SM data while providing more spatial details. Moreover, the moisture mass is conserved during the downscaling process. The downscaled SM values have a good agreement with in situ SM measurements. The unbiased root-mean-square errors (ubRMSEs) of downscaled SM values is 0.035 m(3)/m(3) at Fort Cobb, 0.026 m(3)/m(3) at Little Washita, and 0.055 m(3)/m(3) at South Fork, which are comparable to ubRMSEs of original SM estimates at these three CVS.
引用
收藏
页数:20
相关论文
共 52 条
[1]   Development of gridded surface meteorological data for ecological applications and modelling [J].
Abatzoglou, John T. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2013, 33 (01) :121-131
[2]   Remote sensing of drought: Progress, challenges and opportunities [J].
AghaKouchak, A. ;
Farahmand, A. ;
Melton, F. S. ;
Teixeira, J. ;
Anderson, M. C. ;
Wardlow, B. D. ;
Hain, C. R. .
REVIEWS OF GEOPHYSICS, 2015, 53 (02) :452-480
[3]   A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation [J].
Anderson, Martha C. ;
Norman, John M. ;
Mecikalski, John R. ;
Otkin, Jason A. ;
Kustas, William P. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[4]   Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States [J].
Anderson, Martha C. ;
Hain, Christopher ;
Wardlow, Brian ;
Pimstein, Agustin ;
Mecikalski, John R. ;
Kustas, William P. .
JOURNAL OF CLIMATE, 2011, 24 (08) :2025-2044
[5]   An overview of the "triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery [J].
Carlson, Toby .
SENSORS, 2007, 7 (08) :1612-1629
[6]   Development and assessment of the SMAP enhanced passive soil moisture product [J].
Chan, S. K. ;
Bindlish, R. ;
O'Neill, P. ;
Jackson, T. ;
Njoku, E. ;
Dunbar, S. ;
Chaubell, J. ;
Piepmeier, J. ;
Yueh, S. ;
Entekhabi, D. ;
Colliander, A. ;
Chen, F. ;
Cosh, M. H. ;
Caldwell, T. ;
Walker, J. ;
Berg, A. ;
McNairn, H. ;
Thibeault, M. ;
Martinez-Fernandez, J. ;
Uldall, F. ;
Seyfried, M. ;
Bosch, D. ;
Starks, P. ;
Collins, C. Holifield ;
Prueger, J. ;
van der Velde, R. ;
Asanuma, J. ;
Palecki, M. ;
Small, E. E. ;
Zreda, M. ;
Calvet, J. ;
Crow, W. T. ;
Kerr, Y. .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :931-941
[7]   Spaceborne soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach [J].
Chauhan, NS ;
Miller, S ;
Ardanuy, P .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (22) :4599-4622
[8]   Evaluation of drought indices via remotely sensed data with hydrological variables [J].
Choi, Minha ;
Jacobs, Jennifer M. ;
Anderson, Martha C. ;
Bosch, David D. .
JOURNAL OF HYDROLOGY, 2013, 476 :265-273
[9]   Spatial Downscaling of SMAP Soil Moisture Using MODIS Land Surface Temperature and NDVI During SMAPVEX15 [J].
Colliander, Andreas ;
Fisher, Joshua B. ;
Halverson, Gregory ;
Merlin, Olivier ;
Misra, Sidharth ;
Bindlish, Rajat ;
Jackson, Thomas J. ;
Yueh, Simon .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) :2107-2111
[10]   Validation of SMAP surface soil moisture products with core validation sites [J].
Colliander, A. ;
Jackson, T. J. ;
Bindlish, R. ;
Chan, S. ;
Das, N. ;
Kim, S. B. ;
Cosh, M. H. ;
Dunbar, R. S. ;
Dang, L. ;
Pashaian, L. ;
Asanuma, J. ;
Aida, K. ;
Berg, A. ;
Rowlandson, T. ;
Bosch, D. ;
Caldwell, T. ;
Caylor, K. ;
Goodrich, D. ;
al Jassar, H. ;
Lopez-Baeza, E. ;
Martinez-Fernandez, J. ;
Gonzalez-Zamora, A. ;
Livingston, S. ;
McNairn, H. ;
Pacheco, A. ;
Moghaddam, M. ;
Montzka, C. ;
Notarnicola, C. ;
Niedrist, G. ;
Pellarin, T. ;
Prueger, J. ;
Pulliainen, J. ;
Rautiainen, K. ;
Ramos, J. ;
Seyfried, M. ;
Starks, P. ;
Su, Z. ;
Zeng, Y. ;
van der Velde, R. ;
Thibeault, M. ;
Dorigo, W. ;
Vreugdenhil, M. ;
Walker, J. P. ;
Wu, X. ;
Monerris, A. ;
O'Neill, P. E. ;
Entekhabi, D. ;
Njoku, E. G. ;
Yueh, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 191 :215-231