New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method

被引:100
作者
Chen, Y [1 ]
Yan, ZY
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Peoples R China
[2] Chinese Acad Sci, AMSS, Inst Syst Sci, Key Lab Math Mechanizat, Beijing 100080, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1016/j.chaos.2005.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, (2 + 1)-dimensional Gardner equation is investigated using a sine-Gordon equation expansion method, which was presented via a generalized sine-Gordon reduction equation and a new transformation. As a consequence, it is shown that the method is more powerful to obtain many types of new doubly periodic solutions of (2 + 1)-dimensional Gardner equation. In particular, solitary wave solutions are also given as simple limits of doubly periodic solutions. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:399 / 406
页数:8
相关论文
共 17 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   LINK BETWEEN SOLITARY WAVES AND PROJECTIVE RICCATI-EQUATIONS [J].
CONTE, R ;
MUSETTE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5609-5623
[3]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[4]   New transformations and new approach to find exact solutions to nonlinear equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD .
PHYSICS LETTERS A, 2002, 299 (5-6) :507-512
[5]   INVERSE SPECTRAL TRANSFORM FOR THE (2 + 1)-DIMENSIONAL GARDNER EQUATION [J].
KONOPELCHENKO, BG .
INVERSE PROBLEMS, 1991, 7 (05) :739-753
[6]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[7]   Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation [J].
Ma, WX ;
Fuchssteiner, B .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (03) :329-338
[8]  
PATRICK DV, 1973, ELLIPTIC FUNCTION EL
[9]  
WHITTAKER ET, 1952, MODERN ANAL
[10]   A simple transformation for nonlinear waves [J].
Yan, CT .
PHYSICS LETTERS A, 1996, 224 (1-2) :77-84