Double exponential formulas for numerical indefinite integration

被引:50
作者
Muhammad, M [1 ]
Mori, M [1 ]
机构
[1] Tokyo Denki Univ, Dept Math Sci, Hatoyama, Saitama 3500394, Japan
关键词
double exponential transformation; indefinite integration; sinc method;
D O I
10.1016/j.cam.2003.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive a formula for indefinite integration of analytic functions over (-1,s) where -1 < s < 1, by means of the double exponential transformation and the Sine method. The integrand must be analytic on -1 < x < 1 but may have a singularity at the end points x = +/-1. The error of the formula behaves approximately as exp(-c(1)N/log c(2)N) where N is the number of function evaluations of the integrand. This error term shows a much faster convergence to zero when N becomes large than that of the known formula by Haber. Also we derive efficient double exponential formulas for numerical evaluation of indefinite integrals over (0,s), 0 < s < infinity and over (-infinity,s), -infinity < s < + infinity. Several numerical examples indicate high efficiency of the formulas. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:431 / 448
页数:18
相关论文
共 4 条
[1]  
HABER S, 1993, MATH COMPUT, V60, P279, DOI 10.1090/S0025-5718-1993-1149292-9
[2]  
MORI M, 2002, P 2002 S APPL MATH R
[3]   Optimality of the double exponential formula - Functional analysis approach [J].
Sugihara, M .
NUMERISCHE MATHEMATIK, 1997, 75 (03) :379-395
[4]  
Takahasi H., 1974, Publ. RIMS, Kyoto University, V9, P721, DOI DOI 10.2977/PRIMS/1195192451