GENERAL INITIAL DATA FOR A CLASS OF PARABOLIC EQUATIONS INCLUDING THE CURVE SHORTENING PROBLEM

被引:2
作者
Chou, Kai-Seng [1 ]
Kwong, Ying-Chuen [2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Northern Illinois Univ, De Kalb, IL 60115 USA
关键词
Initial trace; curve shortening problem; porous medium equations; Widder's theorem; Cauchy problem; LEVEL SETS; BLOW-UP; SURFACES; MOTION;
D O I
10.3934/dcds.2020157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for a class of non-uniformly parabolic equations including (4) is studied for initial data with less regularity. When m is an element of (1,2], it is shown that there exists a smooth solution for t > 0 when the initial data belongs to L-loc(p),p > 1. When m > 2, the same results holds when the initial data belongs to W-loc(1,p),p >= m(-1). An example is displayed to show that a smooth solution may not exist when the initial data is merely in L-loc(p),p > 1. Solvability of the weak solution is also studied.
引用
收藏
页码:2963 / 2986
页数:24
相关论文
共 50 条
[21]   Cauchy Problem with Summable Initial-Value Functions for Parabolic Equations with Translated Potentials [J].
Muravnik, Andrey B. ;
Rossovskii, Grigorii L. .
MATHEMATICS, 2024, 12 (06)
[22]   Initial boundary value problem of pseudo-parabolic Kirchhoff equations with logarithmic nonlinearity [J].
Zhao, Qiuting ;
Cao, Yang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) :799-816
[23]   Life span of solutions with large initial data for a class of coupled parabolic systems [J].
Xiaojing Xu ;
Zhuan Ye .
Zeitschrift für angewandte Mathematik und Physik, 2013, 64 :705-717
[24]   Life span of solutions with large initial data for a class of coupled parabolic systems [J].
Xu, Xiaojing ;
Ye, Zhuan .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03) :705-717
[25]   On the exterior problem for nonlinear wave equations with small initial data [J].
Kubo, Hideo .
NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 :281-288
[26]   Cauchy problem for a class of degenerate kolmogorov-type parabolic equations with nonpositive genus [J].
S.D. Ivasyshen ;
V. A. Litovchenko .
Ukrainian Mathematical Journal, 2011, 62 :1543-1566
[27]   CAUCHY PROBLEM FOR ONE CLASS OF DEGENERATE PARABOLIC EQUATIONS OF KOLMOGOROV TYPE WITH POSITIVE GENUS [J].
Ivasyshen, S. D. ;
Litovchenko, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (08) :1264-1288
[28]   CAUCHY PROBLEM FOR A CLASS OF DEGENERATE KOLMOGOROV-TYPE PARABOLIC EQUATIONS WITH NONPOSITIVE GENUS [J].
Ivasyshen, S. D. ;
Litovchenko, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 62 (10) :1543-1566
[29]   Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations [J].
Chen, GQ ;
Dibenedetto, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (04) :751-762
[30]   Cauchy problem for one class of degenerate parabolic equations of Kolmogorov type with positive genus [J].
S. D. Ivasyshen ;
V. A. Litovchenko .
Ukrainian Mathematical Journal, 2009, 61 :1264-1288