A ubiquinone-binding site regulates the mitochondrial permeability transition pore

被引:227
作者
Fontaine, E
Ichas, F
Bernardi, P
机构
[1] Univ Padua, Sch Med, Dept Biomed Sci, Lab Biophys & Membrane Biol, I-35121 Padua, Italy
[2] Univ Padua, Sch Med, Consiglio Nazl Ric, Unit Study Biomembranes, I-35121 Padua, Italy
关键词
D O I
10.1074/jbc.273.40.25734
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have investigated the regulation of the mitochondrial permeability transition pore (PTP) by ubiquinone analogues. We found that the Ca2+-dependent PTP opening was inhibited by ubiquinone 0 and decylubiquinone, whereas all other tested quinones (ubiquinone 5, 1,4-benzoquinone, 2-methoxy-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and 2,3-dimethoxy-5,6-dimethyl-1,8-benzoquinone) were ineffective. Pore inhibition was observed irrespective of the method used to induce the permeability transition (addition of P-i or atractylate, membrane depolarization, or dithiol cross-linking). Inhibition of PTP opening by decylubiquinone was comparable with that exerted by cyclosporin A, whereas ubiquinone 0 was more potent. Ubiquinone 5, which did not inhibit the PTP per se, specifically counteracted the inhibitory effect of ubiquinone 0 or decylubiquinone but not that of cyclosporin A. These findings define a ubiquinone-binding site directly involved in PTP regulation and indicate that different quinone structural features are required for binding and for stabilizing the pore in the closed conformation. At variance from all other quinones tested, decylubiquinone did not inhibit respiration. Our results define a new structural class of pore inhibitors and may open new perspectives for the pharmacological modulation of the PTP in vivo.
引用
收藏
页码:25734 / 25740
页数:7
相关论文
共 38 条
[1]   Calcineurin and mitochondrial function in glutamate-induced neuronal cell death [J].
Ankarcrona, M ;
Dypbukt, JM ;
Orrenius, S ;
Nicotera, P .
FEBS LETTERS, 1996, 394 (03) :321-324
[2]   RECENT PROGRESS ON REGULATION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION PORE - A CYCLOSPORINE-SENSITIVE PORE IN THE INNER MITOCHONDRIAL-MEMBRANE [J].
BERNARDI, P ;
BROEKEMEIER, KM ;
PFEIFFER, DR .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1994, 26 (05) :509-517
[3]  
BERNARDI P, 1993, J BIOL CHEM, V268, P1005
[4]  
BERNARDI P, 1992, J BIOL CHEM, V267, P8834
[5]   The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal [J].
Bernardi, P ;
Petronilli, V .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1996, 28 (02) :131-138
[6]  
BROEKEMEIER KM, 1989, J BIOL CHEM, V264, P7826
[7]   Inhibition of the mitochondrial permeability transition by cyclosporin a during long time frame experiments: Relationship between pore opening and the activity of mitochondrial phospholipases [J].
Broekemeier, KM ;
Pfeiffer, DR .
BIOCHEMISTRY, 1995, 34 (50) :16440-16449
[8]   The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites [J].
Chernyak, BV ;
Bernardi, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 238 (03) :623-630
[9]   IDENTIFICATION OF CALCINEURIN AS A KEY SIGNALING ENZYME IN LYMPHOCYTE-T ACTIVATION [J].
CLIPSTONE, NA ;
CRABTREE, GR .
NATURE, 1992, 357 (6380) :695-697
[10]   SELECTIVE-INHIBITION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION PORE AT THE OXIDATION-REDUCTION SENSITIVE DITHIOL BY MONOBROMOBIMANE [J].
COSTANTINI, P ;
CHERNYAK, BV ;
PETRONILLI, V ;
BERNARDI, P .
FEBS LETTERS, 1995, 362 (02) :239-242