Power-Efficient Frequency Allocation Algorithms for Self-Organized Networks

被引:0
作者
Ahmed, Tauseef [1 ]
Le Moullec, Yannick [1 ]
机构
[1] Tallinn Univ Technol, Thomas Johann Seebeck Dept Elect, Tallinn, Estonia
来源
2015 ADVANCES IN WIRELESS AND OPTICAL COMMUNICATIONS (RTUWO) | 2015年
关键词
Cognitive radio; reinforcement learning; dynamic spectrum allocation; power optimization; self organizing network;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we compare three novel schemes for dynamic frequency allocation and transmission power assignment for cognitive radio networks. These spectrum allocation schemes are based on reinforcement learning and power optimization procedures. We propose the so-called RL+Power and RL+Power Coupled schemes and compare them with an existing constant power scheme. Simulation results show that the RL+Power Coupled scheme improves the QoS of the system by up to 5 dB in terms of SINR and by up to 10% in terms of user satisfaction when compared against the two other schemes in a high cell load environment.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 10 条
[1]   Power Optimization in a Non-Coordinated Secondary Infrastructure in a Heterogeneous Cognitive Radio Network [J].
Ahmed, Tauseef ;
Le Moullec, Yannick .
ELEKTRONIKA IR ELEKTROTECHNIKA, 2015, 21 (03) :79-83
[2]  
[Anonymous], 2010, Rep. TS 36.814
[3]  
[Anonymous], IEEE 802 16M EV METH
[4]  
[Anonymous], 2009, CONVEX OPTIMIZATION
[5]  
[Anonymous], 2000, COGNITIVE RADIO INTE
[6]   Intercell Interference Management in OFDMA Networks: A Decentralized Approach Based on Reinforcement Learning [J].
Bernardo, F. ;
Agusti, R. ;
Perez-Romero, J. ;
Sallent, O. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2011, 41 (06) :968-976
[7]  
NGMN Allaiance, 2008, CISC VIS NETW IND GL
[8]   MAC performance of a 3GPP-LTE multihop cellular network [J].
Schoenen, Rainer ;
Halfmann, Ruediger ;
Walke, Bernhard H. .
2008 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, PROCEEDINGS, VOLS 1-13, 2008, :4819-4824
[9]  
Sutton R. S., 1998, REINFORCEMENT LEARNI, V135
[10]  
WILLIAMS RJ, 1992, MACH LEARN, V8, P229, DOI 10.1007/BF00992696