Line nodes, Dirac points, and Lifshitz transition in two-dimensional nonsymmorphic photonic crystals

被引:42
作者
Lin, Jun Yu [1 ]
Hu, Nai Chao [1 ]
Chen, You Jian [1 ]
Lee, Ching Hua [2 ,3 ]
Zhang, Xiao [1 ]
机构
[1] Sun Yat Sen Univ, Dept Phys, SYSU Guangzhou Campus, Guangzhou 510275, Guangdong, Peoples R China
[2] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117546, Singapore
基金
中国国家自然科学基金;
关键词
TOPOLOGICAL INSULATORS; EXPERIMENTAL REALIZATION; WEYL POINTS; SEMIMETAL; SPIN; PHASE;
D O I
10.1103/PhysRevB.96.075438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Topological phase transitions, which have fascinated generations of physicists, are always demarcated by gap closures. In this work, we propose very simple two-dimensional photonic crystal lattices with gap closures, i.e., band degeneracies protected by nonsymmorphic symmetry. Our photonic structures are relatively easy to fabricate, consisting of two inequivalent dielectric cylinders per unit cell. Along high-symmetry directions, they exhibit line degeneracies protected by glide-reflection symmetry and time-reversal symmetry, which we explicitly demonstrate for pg, pmg, pgg, and p4g nonsymmorphic groups. They also exhibit point degeneracies (Dirac points) protected by a Z(2) topological number associated only with crystalline symmetry. Strikingly, the robust protection of pg symmetry allows a Lifshitz transition to a type-II Dirac cone across a wide range of experimentally accessible parameters, thus providing a convenient route for realizing anomalous refraction. Further potential applications include a stoplight device based on electrically induced strain that dynamically switches the lattice symmetry from pgg to the higher p4g symmetry. This controls the coalescence of Dirac points and hence the group velocity within the crystal.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Tunable Flux Vortices in Two-Dimensional Dirac Superconductors
    Zeytinoglu, Sina
    Imamoglu, Atac
    Huber, Sebastian
    PHYSICAL REVIEW LETTERS, 2020, 124 (20)
  • [22] Progress of two-dimensional photonic topological insulators
    Liu Hui
    Wang Hao-nan
    Xie Bo-yang
    Cheng Hua
    Tian Jian-guo
    Chen Shu-qi
    CHINESE OPTICS, 2021, 14 (04): : 935 - 954
  • [23] Existence of a line of critical points in a two-dimensional Lebwohl Lasher model
    Shabnam, Sabana
    DasGupta, Sudeshna
    Roy, Soumen Kumar
    PHYSICS LETTERS A, 2016, 380 (5-6) : 667 - 671
  • [24] Topological Edge State in the Two-Dimensional Stampfli-Triangle Photonic Crystals
    Yan, Bei
    Xie, Jianlan
    Liu, Exian
    Peng, Yuchen
    Ge, Rui
    Liu, Jianjun
    Wen, Shuangchun
    PHYSICAL REVIEW APPLIED, 2019, 12 (04)
  • [25] Far-field detection of two-dimensional terahertz topological photonic crystals
    Ma JiaJun
    Ouyang ChunMei
    Chen XieYu
    Xu Quan
    Li ShaoXian
    Feng Xi
    Niu Li
    Liu Yi
    Han JiaGuang
    Zhang WeiLi
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2021, 51 (05)
  • [26] Level spacing statistics for two-dimensional massless Dirac billiards
    Huang Liang
    Xu Hong-Ya
    Lai Ying-Cheng
    Grebogid, Celso
    CHINESE PHYSICS B, 2014, 23 (07)
  • [27] Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M = Hf, Zr)
    Chen, C.
    Xu, X.
    Jiang, J.
    Wu, S. -C.
    Qi, Y. P.
    Yang, L. X.
    Wang, M. X.
    Sun, Y.
    Schroeter, N. B. M.
    Yang, H. F.
    Schoop, L. M.
    Lv, Y. Y.
    Zhou, J.
    Chen, Y. B.
    Yao, S. H.
    Lu, M. H.
    Chen, Y. F.
    Felser, C.
    Yan, B. H.
    Liu, Z. K.
    Chen, Y. L.
    PHYSICAL REVIEW B, 2017, 95 (12)
  • [28] Two-dimensional Dirac fermions in a mass superlattice
    De Martino, Alessandro
    Dell'Anna, Luca
    Handt, Lukas
    Miserocchi, Andrea
    Egger, Reinhold
    PHYSICAL REVIEW B, 2023, 107 (11)
  • [29] The rare two-dimensional materials with Dirac cones
    Wang, Jinying
    Deng, Shibin
    Liu, Zhongfan
    Liu, Zhirong
    NATIONAL SCIENCE REVIEW, 2015, 2 (01) : 22 - 39
  • [30] Tunable two-dimensional Dirac nodal nets
    Shao, Ding-Fu
    Zhang, Shu-Hui
    Dang, Xiaoqian
    Tsymbal, Evgeny Y.
    PHYSICAL REVIEW B, 2018, 98 (16)