Recent Advances in Electrochemical CO2-to-CO Conversion on Heterogeneous Catalysts

被引:483
作者
Zheng, Tingting [1 ,2 ]
Jiang, Kun [1 ]
Wang, Haotian [1 ,3 ]
机构
[1] Harvard Univ, Rowland Inst, Cambridge, MA 02142 USA
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[3] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
关键词
carbon dioxide reduction; carbon monoxide evolution; electrocatalysis; single atom catalysts; transition metal catalysts; DEPENDENT ELECTROCATALYTIC REDUCTION; CO2; REDUCTION; CARBON-DIOXIDE; EFFICIENT REDUCTION; SELECTIVE CONVERSION; HIGHLY EFFICIENT; ORGANIC FRAMEWORKS; METAL-ELECTRODES; AU NANOPARTICLES; IN-SITU;
D O I
10.1002/adma.201802066
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical reduction of carbon dioxide (CO2) to fuels and chemicals provides a promising solution for renewable energy storage and utilization. Among the many possible reaction pathways, CO2 conversion to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks, and holds great significance for the chemical industry. Herein, recent advances in heterogeneous catalysts for selective CO evolution from electrochemical reduction of CO2 are described. With Au catalysts as a paradigm, principles for catalyst design including size, morphology, and grain boundary densities tuning, surface modifications, as well as metal-support interaction are comprehensively summarized, which shed light on the development of other transition metal catalysts targeting efficient CO2-to-CO conversion. In addition, recently emerged novel materials including transition metal single-atom catalysts, which present significantly different catalytic behaviors compared to their bulk counterparts and thus open up many unexpected opportunities, are summarized. Furthermore, the technical aspects with respect to large-scale production of CO are presented, focusing on the full-cell design and implementation. Finally, short comments related to the future direction of real-word CO2 electrolysis for CO supply are provided in terms of catalyst optimization and technical breakthrough.
引用
收藏
页数:15
相关论文
共 114 条
[1]   Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte [J].
Aeshala, Leela Manohar ;
Uppaluri, Ramagopal ;
Verma, Anil .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (33) :17588-17594
[2]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[3]   ELECTROCATALYTIC REDUCTION OF CO2 BY NI CYCLAM2+ IN WATER - STUDY OF THE FACTORS AFFECTING THE EFFICIENCY AND THE SELECTIVITY OF THE PROCESS [J].
BELEY, M ;
COLLIN, JP ;
RUPPERT, R ;
SAUVAGE, JP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (24) :7461-7467
[4]   Efficient reduction of CO2 in a solid oxide electrolyzer [J].
Bidrawn, F. ;
Kim, G. ;
Corre, G. ;
Irvine, J. T. S. ;
Vohs, J. M. ;
Gorte, R. J. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (09) :B167-B170
[5]  
Burke K. A., 2016, GAME CHANGING DEV PR
[6]   A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction [J].
Cao, Zhi ;
Kim, Dohyung ;
Hong, Dachao ;
Yu, Yi ;
Xu, Jun ;
Lin, Song ;
Wen, Xiaodong ;
Nichols, Eva M. ;
Jeong, Keunhong ;
Reimer, Jeffrey A. ;
Yang, Peidong ;
Chang, Christopher J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (26) :8120-8125
[7]   Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CATALYSIS TODAY, 2009, 148 (3-4) :191-205
[8]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[9]   Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction [J].
Cheng, Yi ;
Zhao, Shiyong ;
Johannessen, Bernt ;
Veder, Jean-Pierre ;
Saunders, Martin ;
Rowles, Matthew R. ;
Cheng, Min ;
Liu, Chang ;
Chisholm, Matthew F. ;
De Marco, Roland ;
Cheng, Hui-Ming ;
Yang, Shi-Ze ;
Jiang, San Ping .
ADVANCED MATERIALS, 2018, 30 (13)
[10]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22