ON TIME-CHANGED GAUSSIAN PROCESSES AND THEIR ASSOCIATED FOKKER-PLANCK-KOLMOGOROV EQUATIONS

被引:17
作者
Hahn, Marjorie G. [1 ]
Kobayashi, Kei [1 ]
Ryvkina, Jelena [1 ]
Umarov, Sabir [1 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
关键词
time-change; inverse subordinator; Gaussian process; Fokker-Planck equation; Kolmogorov equation; fractional Brownian motion; time-dependent Hurst parameter; Volterra process; RANDOM-WALKS; DIFFUSION; CALCULUS; RESPECT; CAUCHY;
D O I
10.1214/ECP.v16-1620
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper establishes Fokker-Planck-Kolmogorov type equations for time-changed Gaussian processes. Examples include those equations for a time-changed fractional Brownian motion with time-dependent Hurst parameter and for a time-changed Ornstein-Uhlenbeck process. The time-change process considered is the inverse of either a stable subordinator or a mixture of independent stable subordinators.
引用
收藏
页码:150 / 164
页数:15
相关论文
共 38 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
Andries E., 2006, Fract. Calc. Appl. Anal, V9, P351
[3]  
[Anonymous], 2005, Fract. Calc. Appl. Anal
[4]  
[Anonymous], Cambridge Texts in Mathematics 129
[5]  
[Anonymous], 2009, Levy processes and stochastic calculus
[6]   BROWNIAN SUBORDINATORS AND FRACTIONAL CAUCHY PROBLEMS [J].
Baeumer, Boris ;
Meerschaert, Mark M. ;
Nane, Erkan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3915-3930
[7]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[8]  
Biagini F, 2008, PROBAB APPL SER, P1
[9]   Arbitrage in fractional Brownian motion models [J].
Cheridito, P .
FINANCE AND STOCHASTICS, 2003, 7 (04) :533-553
[10]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934