Darboux transformation and soliton-like solutions of nonlinear Schrodinger equations

被引:47
作者
Xia, TC [1 ]
Chen, XH
Chen, DY
机构
[1] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
[2] Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China
[3] Anshan Univ Sci & Technol, Dept Math, Anshan 114007, Peoples R China
[4] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
关键词
D O I
10.1016/j.chaos.2005.01.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Letter, a systematic method is presented to construct c the Darboux transformation with multi-parameters for the coupled nonlinear Schrodinger equations, from which the solutions of Schrodinger equations are reduced to solving a linear algebraic system and a constraint differential equation. With the aid of symbolic computation, new soliton-like solutions for the nonlinear Schrodinger equations are obtained by using its Darboux transformation. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:889 / 896
页数:8
相关论文
共 22 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[3]  
CIESLINSKI J, 1995, J MATH PHYS, V36, P5670, DOI 10.1063/1.531282
[4]   EXACT-SOLUTIONS OF THE MULTIDIMENSIONAL DERIVATIVE NONLINEAR SCHRODINGER-EQUATION FOR MANY-BODY SYSTEMS NEAR CRITICALITY [J].
CLARKSON, PA ;
TUSZYNSKI, JA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19) :4269-4288
[5]  
CLARKSON PA, 2003, J PHYS A, P20
[6]   Darboux transformation and solutions for an equation in 2+1 dimensions [J].
Estévez, PG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) :1406-1419
[7]   Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation [J].
Fan, EG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (39) :6925-6933
[8]  
Fan EG, 2000, J MATH PHYS, V41, P2058, DOI 10.1063/1.533226
[9]  
Gerdjikov V. S., 1983, Bulgarian Journal of Physics, V10, P130
[10]  
GU CH, 1986, LETT MATH PHYS, V11, P325, DOI 10.1007/BF00574158