COMPARISON OF MACHINE LEARNING ALGORITHMS FOR BREAST CANCER

被引:0
|
作者
Suryachandra, Palli [1 ]
Reddy, P. Venkata Subba [2 ]
机构
[1] SVEC, CSSE Dept, Tirupati, Andhra Prades, India
[2] SV Univ, SVUCE, CSE Dept, Tirupati, Andhra Prades, India
关键词
Machine Learning; Decision Tree; Support Vector Machine; Bayesian Belief Network;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning algorithms are computer programs that try to predict cancer type based on the past data. The eventual goal of Machine learning algorithms in cancer diagnosis is to have a trained machine learning algorithm that gives the gene expression levels from cancer patient, can accurately predict what type and severity of cancer they have, aiding the doctor in treating it. The existing technology compares three different machine learning algorithms are Decision Tree, Support Vector Machine, Bayesian Belief Network. The main drawback of these algorithms is unusual because the number of features (gene expressions) far exceeds the number of cases (samples taken from patients). Performance efficiency can be achieved by comparing two more algorithms are Random Forest and Naive Bayes algorithms. Because Random forest and Naive Bayes are used as feature selection method, Random Forest is used to rank the feature importance and applied for relevant feedback. The requirements are weka tool, Java and Relational Database.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 50 条
  • [41] Interpretability methods of machine learning algorithms with applications in breast cancer diagnosis
    Karatza, P.
    Dalakleidi, K.
    Athanasiou, M.
    Nikita, K. S.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2310 - 2313
  • [42] A comparison of machine learning techniques for survival prediction in breast cancer
    Leonardo Vanneschi
    Antonella Farinaccio
    Giancarlo Mauri
    Marco Antoniotti
    Paolo Provero
    Mario Giacobini
    BioData Mining, 4
  • [43] Comparison on Some Machine Learning Techniques in Breast Cancer Classification
    Mashudi, Nurul Amirah
    Rossli, Syaidathul Amaleena
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 499 - 504
  • [44] A comparison of machine learning techniques for survival prediction in breast cancer
    Vanneschi, Leonardo
    Farinaccio, Antonella
    Mauri, Giancarlo
    Antoniotti, Mauro
    Provero, Paolo
    Giacobini, Mario
    BIODATA MINING, 2011, 4
  • [45] Comparative Analysis to Predict Breast Cancer using Machine Learning Algorithms: A Survey
    Thomas, Tanishk
    Pradhan, Nitesh
    Dhaka, Vijaypal Singh
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 192 - 196
  • [46] Improved modelling of breast cancer cells using machine learning heuristic algorithms
    Sajjad, Maria
    Idrees, M.
    Younas, M.
    Sohail, Ayesha
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2024,
  • [47] Breast Cancer Relapse Prognosis by Classic and Modern Structures of Machine Learning Algorithms
    Jafarpisheh, Noushin
    Nafisi, Nahid
    Teshnehlab, Mohammad
    2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2018, : 120 - 122
  • [48] Machine Learning Algorithms for Breast Cancer Detection in Mammography Images: A Comparative Study
    de Miranda Almeida, Rhaylander Mendes
    Chen, Dehua
    da Silva Filho, Agnaldo Lopes
    Brandao, Wladmir Cardoso
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1, 2021, : 660 - 667
  • [49] Comparative analysis of classification algorithms on the breast cancer recurrence using machine learning
    Mikhailova, Valentina
    Anbarjafari, Gholamreza
    Medical and Biological Engineering and Computing, 2022, 60 (09): : 2589 - 2600
  • [50] Comparative analysis of classification algorithms on the breast cancer recurrence using machine learning
    Valentina Mikhailova
    Gholamreza Anbarjafari
    Medical & Biological Engineering & Computing, 2022, 60 : 2589 - 2600