COMPARISON OF MACHINE LEARNING ALGORITHMS FOR BREAST CANCER

被引:0
|
作者
Suryachandra, Palli [1 ]
Reddy, P. Venkata Subba [2 ]
机构
[1] SVEC, CSSE Dept, Tirupati, Andhra Prades, India
[2] SV Univ, SVUCE, CSE Dept, Tirupati, Andhra Prades, India
关键词
Machine Learning; Decision Tree; Support Vector Machine; Bayesian Belief Network;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning algorithms are computer programs that try to predict cancer type based on the past data. The eventual goal of Machine learning algorithms in cancer diagnosis is to have a trained machine learning algorithm that gives the gene expression levels from cancer patient, can accurately predict what type and severity of cancer they have, aiding the doctor in treating it. The existing technology compares three different machine learning algorithms are Decision Tree, Support Vector Machine, Bayesian Belief Network. The main drawback of these algorithms is unusual because the number of features (gene expressions) far exceeds the number of cases (samples taken from patients). Performance efficiency can be achieved by comparing two more algorithms are Random Forest and Naive Bayes algorithms. Because Random forest and Naive Bayes are used as feature selection method, Random Forest is used to rank the feature importance and applied for relevant feedback. The requirements are weka tool, Java and Relational Database.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 50 条
  • [21] Evaluating Diagnostic Performance of Machine Learning Algorithms on Breast Cancer
    Gatuha, George
    Jiang, Tao
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 258 - 266
  • [22] Breast Cancer Prediction Based on Multiple Machine Learning Algorithms
    Zhou, Sheng
    Hu, Chujiao
    Wei, Shanshan
    Yan, Xiaofan
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2024, 23
  • [23] Comparison of Machine Learning Algorithms for Tumor Detection in Breast Microwave Imaging
    Patel, Priyam
    Raina, Anant
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 882 - 886
  • [24] A Study of Breast Cancer Classification Algorithms by Fusing Machine Learning and Deep Learning
    Sun, Lifei
    Li, Sen
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [25] Comparison of Performance of Machine Learning Algorithms for Cervical Cancer Classification
    Karani, Hamza
    Gangurde, Ashish
    Dhumal, Gauri
    Gautam, Waidehi
    Hiran, Samiksha
    Marathe, Abha
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [26] Comparison of Machine Learning Algorithms Used for Skin Cancer Diagnosis
    Bistro, Marta
    Piotrowski, Zbigniew
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [27] Comparison of Machine Learning Classifiers for Breast Cancer Diagnosis
    Arshed, Muhammad Asad
    Qureshi, Wajeeha
    Rumaan, Muhammad
    Ubaid, Muhammad Talha
    Qudoos, Abdul
    Khan, Muhammad Usman Ghani
    4TH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING (IC)2, 2021, : 244 - 249
  • [28] A Comparison of Machine Learning Methods for the Prediction of Breast Cancer
    Silva, Sara
    Anunciacao, Orlando
    Lotz, Marco
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, 2011, 6623 : 159 - +
  • [29] Comparison of Machine Learning Methods for Breast Cancer Diagnosis
    Bayrak, Ebru Aydindag
    Kirci, Pinar
    Ensari, Tolga
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [30] Applying Best Machine Learning Algorithms for Breast Cancer Prediction and Classification
    Khourdifi, Youness
    Bahaj, Mohamed
    2018 INTERNATIONAL CONFERENCE ON ELECTRONICS, CONTROL, OPTIMIZATION AND COMPUTER SCIENCE (ICECOCS), 2018,