GeoConv: Geodesic guided convolution for facial action unit recognition

被引:16
作者
Chen, Yuedong [1 ]
Song, Guoxian [2 ]
Shao, Zhiwen [3 ,4 ]
Cai, Jianfei [1 ]
Cham, Tat-Jen [2 ]
Zheng, Jianmin [2 ]
机构
[1] Monash Univ, Fac Informat Technol, Clayton, Vic 3800, Australia
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[3] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[4] Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
基金
新加坡国家研究基金会;
关键词
Geodesic guided convolution; 3D morphable face model; Facial action unit recognition; Emotion recognition;
D O I
10.1016/j.patcog.2021.108355
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic facial action unit (AU) recognition has attracted great attention but still remains a challenging task, as subtle changes of local facial muscles are difficult to thoroughly capture. Most existing AU recognition approaches leverage geometry information in a straightforward 2D or 3D manner, which either ignore 3D manifold information or suffer from high computational costs. In this paper, we propose a novel geodesic guided convolution (GeoConv) for AU recognition by embedding 3D manifold information into 2D convolutions. Specifically, the kernel of GeoConv is weighted by our introduced geodesic weights, which are negatively correlated to geodesic distances on a coarsely reconstructed 3D morphable face model. Moreover, based on GeoConv, we further develop an end-to-end trainable framework named GeoCNN for AU recognition. Extensive experiments on BP4D and DISFA benchmarks show that our approach significantly outperforms the state-of-the-art AU recognition methods. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 40 条
  • [1] Bayramoglu N., 2013, INT CONF BIOMETR, P1
  • [2] A morphable model for the synthesis of 3D faces
    Blanz, V
    Vetter, T
    [J]. SIGGRAPH 99 CONFERENCE PROCEEDINGS, 1999, : 187 - 194
  • [3] Geometric Deep Learning Going beyond Euclidean data
    Bronstein, Michael M.
    Bruna, Joan
    LeCun, Yann
    Szlam, Arthur
    Vandergheynst, Pierre
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 18 - 42
  • [4] FaceWarehouse: A 3D Facial Expression Database for Visual Computing
    Cao, Chen
    Weng, Yanlin
    Zhou, Shun
    Tong, Yiying
    Zhou, Kun
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (03) : 413 - 425
  • [5] Chen SK, 2020, PROC CVPR IEEE, P13981, DOI 10.1109/CVPR42600.2020.01400
  • [6] Chen Y., 2019, IEEE VISUAL COMMUNIC, P1
  • [7] Deep Structure Inference Network for Facial Action Unit Recognition
    Corneanu, Ciprian
    Madadi, Meysam
    Escalera, Sergio
    [J]. COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 309 - 324
  • [8] The Heat Method for Distance Computation
    Crane, Keenan
    Weischedel, Clarisse
    Wardetzky, Max
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (11) : 90 - 99
  • [9] Deformable Convolutional Networks
    Dai, Jifeng
    Qi, Haozhi
    Xiong, Yuwen
    Li, Yi
    Zhang, Guodong
    Hu, Han
    Wei, Yichen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 764 - 773
  • [10] Ekman P., 2002, FACIAL ACTION CODING