φ-Best proximity point theorems and applications to variational inequality problems

被引:0
作者
Isik, Huseyin [1 ]
Sezen, M. Sangurlu [2 ]
Vetro, Calogero [3 ]
机构
[1] Mus Alparslan Univ, Fac Sci & Arts, Dept Math, TR-49100 Mus, Turkey
[2] Univ Giresun, Fac Sci & Arts, Dept Math, Gazipasa, Giresun, Turkey
[3] Univ Palermo, Dept Math & Comp Sci, Via Archirafi 34, I-90123 Palermo, Italy
关键词
(F; phi)-proximal contraction; phi)-weak proximal contraction; phi-best proximity point; partial metric space; metric projection; variational inequality; PARTIAL METRIC-SPACES; EXISTENCE; CONVERGENCE;
D O I
10.1007/s11784-017-0479-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main concern of this study is to introduce the notion of -best proximity points and establish the existence and uniqueness of -best proximity point for non-self mappings satisfying -proximal and -weak proximal contraction conditions in the context of complete metric spaces. Some examples are supplied to support the usability of our results. As applications of the obtained results, some new best proximity point results in partial metric spaces are presented. Furthermore, sufficient conditions to ensure the existence of a unique solution for a variational inequality problem are also discussed.
引用
收藏
页码:3177 / 3189
页数:13
相关论文
共 22 条
  • [1] Global Optimal Solutions of Noncyclic Mappings in Metric Spaces
    Abkar, A.
    Gabeleh, M.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (02) : 298 - 305
  • [2] Convergence and existence results for best proximity points
    Al-Thagafi, M. A.
    Shahzad, Naseer
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3665 - 3671
  • [3] Best Proximity Points for Some Classes of Proximal Contractions
    Alghamdi, Maryam A.
    Shahzad, Naseer
    Vetro, Francesca
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [4] Common best proximity points theorems in metric spaces
    Amini-Harandi, A.
    [J]. OPTIMIZATION LETTERS, 2014, 8 (02) : 581 - 589
  • [5] Common Solutions to Variational Inequalities
    Censor, Yair
    Gibali, Aviv
    Reich, Simeon
    Sabach, Shoham
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (02) : 229 - 247
  • [6] Derafshpour M, 2011, TOPOL METHOD NONL AN, V37, P193
  • [7] Deutsch FR., 2012, Best Approximation in Inner Product Spaces
  • [8] Best proximity points for cyclic Meir-Keeler contractions
    Di Bari, Cristina
    Suzuki, Tomonari
    Vetro, Calogero
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3790 - 3794
  • [9] Existence and convergence of best proximity points
    Eldred, A. Anthony
    Veeramani, P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) : 1001 - 1006
  • [10] Goebel K, 1984, Uniform convexity, hyperbolic geometry, and non-expansive mappings