Solar photocatalytic generation of hydrogen from hydrogen sulphide using CdS-based photocatalysts

被引:0
作者
Priya, R. [1 ]
Kanmani, S. [1 ]
机构
[1] Anna Univ, Ctr Environm Studies, Madras 600025, Tamil Nadu, India
来源
CURRENT SCIENCE | 2008年 / 94卷 / 01期
关键词
hydrogen; hydrogen sulphide; semiconductors; solar photocatalysis;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Laboratory-scale feasibility studies on solar photocatalytic generation of hydrogen (H-2) from Na2S/Na2SO3 solution by using CdS-based photocatalysts have been carried out in a batch solar photocatalytic reactor of 300 ml capacity. Three CdS-based photocatalytic mixtures [viz. CdS/ZnS, (CdS/ZnS)/Ag2S and (CdS/ZnS)/ Ag2S + (RuO2/TiO2)] were synthesized by adding wide band-gap semiconductors (ZnS and TiO2), promoters (Ag2S) and metal dopants (RuO2), and the activities of the three photocataIytic mixtures were evaluated. H-2 generation was found to be a maximum of 392 ml/g/h for the photocatalytic mixture of (CdS/ZnS)/Ag2S + (RuO2/TiO2) whereas it was only 213 ml/g/h for the photocatalytic mixture of CdS/ZnS. Thus, the solar photocatalytic generation of H-2 from Na2S/Na2SO3 solution using (CdS/ZnS)/Ag2S + (RuO2/TiO2) was found to be feasible.
引用
收藏
页码:102 / 104
页数:3
相关论文
共 50 条
[21]   Solar production of hydrogen using "self-assembled" polyoxometalate photocatalysts [J].
Muradov, Nazim Z. ;
T-Raissi, Ali .
Solar Engineering 2005, 2006, :651-657
[22]   Direct solar photocatalytic hydrogen generation with CPC photoreactors: System development [J].
Wei, Qingyu ;
Yang, Yan ;
Hou, Junyi ;
Liu, Huan ;
Cao, Fei ;
Zhao, Liang .
SOLAR ENERGY, 2017, 153 :215-223
[23]   Spherical NiCu phyllosilicate photocatalysts for hydrogen generation [J].
Ghiat, Imane ;
Saadi, Adel ;
Bachari, Khaldoun ;
Coville, Neil J. ;
Boudjemaa, Amel .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (75) :37656-37669
[24]   Advancements in silica-based nanostructured photocatalysts for efficient hydrogen generation from water splitting [J].
Abdulkadir, B. A. ;
Teh, L. P. ;
Abidin, S. Z. ;
Setiabudi, H. D. ;
Jusoh, R. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 199 :541-568
[25]   A methodology for simulating hydrogen sulphide generation in sewer network using EPA SWMM [J].
Marleni, Nyoman ;
Park, Kyoohong ;
Lee, Taehoon ;
Navaratna, Dimuth ;
Shu, Li ;
Jegatheesan, Veeriah ;
Nam Pham ;
Feliciano, Antonio .
DESALINATION AND WATER TREATMENT, 2015, 54 (4-5) :1308-1317
[26]   Cu/CdS/MnOx Nanostructure-Based Photocatalyst for Photocatalytic Hydrogen Evolution [J].
Xiang, Dingzhou ;
Hao, Xuqiang ;
Jin, Zhiliang .
ACS APPLIED NANO MATERIALS, 2021, 4 (12) :13848-13860
[27]   Enhanced Photocatalytic Hydrogen Generation Using Polymorphic Macroporous TaON [J].
Tsang, Min-Ying ;
Pridmore, Natalie E. ;
Gillie, Lisa J. ;
Chou, Yi-Hsin ;
Brydson, Rik ;
Douthwaite, Richard E. .
ADVANCED MATERIALS, 2012, 24 (25) :3406-3409
[28]   Hydrogen Production Using Modern Photocatalysts [J].
Wawrzynczak, Agata ;
Feliczak-Guzik, Agnieszka .
COATINGS, 2024, 14 (03)
[29]   Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts [J].
Nada, AA ;
Barakat, MH ;
Hamed, HA ;
Mohamed, NR ;
Veziroglu, TN .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (07) :687-691
[30]   Solar Hydrogen Production on Some Water Splitting Photocatalysts [J].
Takata, Tsuyoshi ;
Hisatomi, Takashi ;
Domen, Kazunari .
SOLAR HYDROGEN AND NANOTECHNOLOGY XI, 2016, 9935