Phenomenological model of synthesis of few-layer graphene (FLG) by the selfpropagating high-temperature synthesis (SHS) method from biopolymers

被引:4
作者
Voznyakovskii, Alexander [1 ]
Vozniakovskii, Aleksei [2 ]
Kidalov, Sergey [2 ]
机构
[1] Lebedev Res Inst Synthet Rubber, St Petersburg, Russia
[2] Ioffe Inst, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
Few-layer graphene; SHS; self-propagating high-temperature synthesis; graphene nanostructures; FLG; CARBON NANOTUBES; NANOPLATELETS; NANOSHEETS; PYROLYSIS;
D O I
10.1080/1536383X.2021.1993831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A phenomenological model for the synthesis of few-layer graphene (FLG) nanosheets by the method of self-propagating high-temperature synthesis (SHS) from starch, lignin, and other biopolymers is considered. We suggested that polysaccharides, in particular starch, could be an acceptable source of native cycles for the SHS process. The carbonization of biopolymers under the conditions of the SHS process was chosen as the basic method of synthesis. Chemical reactions, under the conditions of the SHS process, proceed according to a specific mechanism of nonisothermal branched-chain processes, which are characterized by the joint action of two fundamentally different process-accelerating factors - avalanche reproduction of active intermediate particles and self-heating. It is shown that the proposed model can explain the production of few-layer graphene nanosheets with linear dimensions of tens of microns and a thickness of several graphene layers.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 30 条
  • [1] Studying the conversion of graphite into nanographene sheets using supercritical phase exfoliation method
    Adel, Muhammad
    Abdel-Karim, Randa
    Abdelmoneim, Ahmed
    [J]. FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (07) : 589 - 602
  • [2] Nanotubes from carbon
    Ajayan, PM
    [J]. CHEMICAL REVIEWS, 1999, 99 (07) : 1787 - 1799
  • [3] Azatyan V.V., 1999, Russ. Chem. Rev, V68, P1021, DOI DOI 10.1070/RC1999V068N12ABEH000520
  • [4] Large-scalable graphene oxide films with resistive switching for non-volatile memory applications
    Brzhezinskaya, M.
    Kapitanova, O. O.
    Kononenko, O., V
    Koveshnikov, S.
    Korepanov, V
    Roshchupkin, D.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 849
  • [5] Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites
    Chatterjee, S.
    Nafezarefi, F.
    Tai, N. H.
    Schlagenhauf, L.
    Nueesch, F. A.
    Chu, B. T. T.
    [J]. CARBON, 2012, 50 (15) : 5380 - 5386
  • [6] Overview of applications of biomass fast pyrolysis oil
    Czernik, S
    Bridgwater, AV
    [J]. ENERGY & FUELS, 2004, 18 (02) : 590 - 598
  • [7] Dolmatov VY, 2007, USP KHIM+, V76, P375
  • [8] Dresselhaus M.S., 1996, SCI FULLERENES CARBO
  • [9] Graphene: fabrication methods and thermophysical properties
    Eletskii, A. V.
    Iskandarova, I. M.
    Knizhnik, A. A.
    Krasikov, D. N.
    [J]. PHYSICS-USPEKHI, 2011, 54 (03) : 227 - 258
  • [10] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)