Genome-wide identification and expression of GRAS gene family members in cassava

被引:45
作者
Shan, Zhongying [1 ,3 ]
Luo, Xinglu [1 ,2 ]
Wu, Meiyan [1 ]
Wei, Limei [1 ]
Fan, Zhupeng [1 ]
Zhu, Yanmei [1 ]
机构
[1] Guangxi Univ, Coll Agr, Nanning 530005, Peoples R China
[2] State Key Lab Conservat & Utilizat Subtrop Agrobi, Nanning 530004, Peoples R China
[3] Dezhou Univ, Coll Ecol & Garden Architecture, Dezhou 253023, Peoples R China
关键词
Cassava; GRAS genes; Gene expression; Abiotic stress; SCARECROW-LIKE; 3; SIGNALING PATHWAY; SHORT-ROOT; ARABIDOPSIS; PROTEINS; STRESS; GROWTH; DELLA; RICE; ACCUMULATION;
D O I
10.1186/s12870-020-2242-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Cassava is highly tolerant to stressful conditions, especially drought stress conditions; however, the mechanisms underlying this tolerance are poorly understood. The GRAS gene family is a large family of transcription factors that are involved in regulating the growth, development, and stress responses of plants. Currently, GRAS transcription factors have not been systematically studied in cassava, which is the sixth most important crop in the world. Results Seventy-seven MeGRAS genes were identified from the cassava genome database. Phylogenetic analysis revealed that the MeGRAS proteins could be divided into 14 subfamilies. The gene structure and motif compositions of the proteins were considerably conserved within the same subfamily. Duplication events, particularly segmental duplication, were identified as the main driving force for GRAS gene expansion in cassava. Global expression analysis revealed that MeGRAS genes exhibited similar or distinct expression profiles within different tissues among different varieties. Moreover, qRT-PCR analysis revealed the expression patterns of MeGRAS genes in response to abiotic stress (drought, salt, cold, and H2O2), and the results suggest that these genes may have multiple functions. Conclusion This study is the first to provide comprehensive information on GRAS gene family members in cassava. The data will increase our understanding of both the molecular basis and the effects of GRAS genes. In addition, the results will contribute further to identifying the responses to various environmental conditions and provide insights into the potential functions of GRAS genes.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Genome-wide identification and expression analysis of the GRAS family proteins in Medicago truncatula
    Lili Song
    Lei Tao
    Huiping Cui
    Lei Ling
    Changhong Guo
    Acta Physiologiae Plantarum, 2017, 39
  • [42] Genome-Wide Identification and Expression Analysis of the SRS Gene Family in Medicago sativa
    Yang, Yingbo
    Qi, Lin
    Nian, Lili
    Zhu, Xiaolin
    Yi, Xianfeng
    Jiyu, Zhang
    Qiu, Jinhua
    DNA AND CELL BIOLOGY, 2021, 40 (12) : 1539 - 1553
  • [43] Genome-wide identification, classification, and expression profiling of LAC gene family in sesame
    Zhou, Jianglong
    Hu, Fengduo
    Berhe, Muez
    Zhou, Rong
    Li, Donghua
    Li, Huan
    Yang, Li
    Zhou, Ting
    Zhang, Yanxin
    Wang, Linhai
    You, Jun
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [44] Genome-Wide Investigation of the PLD Gene Family in Tomato: Identification, Analysis, and Expression
    Guo, Xudong
    Zhu, Wenying
    Wang, Fu
    Wang, Hui
    GENES, 2024, 15 (03)
  • [45] Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis
    Liu, Hui
    Deng, Zhi
    Chen, Jiangshu
    Wang, Sen
    Hao, Lili
    Li, Dejun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 105 : 90 - 101
  • [46] Genome-Wide Identification, Expression, and Functional Analysis of the Alkaline/Neutral Invertase Gene Family in Pepper
    Shen, Long-Bin
    Yao, Yuan
    He, Huang
    Qin, Yu-Ling
    Liu, Zi-Ji
    Liu, Wei-Xia
    Qi, Zhi-Qiang
    Yang, Li-Jia
    Cao, Zhen-Mu
    Yang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (01)
  • [47] Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia
    Shao, Yun
    Qin, Yuan
    Zou, Yangjun
    Ma, Fengwang
    GENE, 2014, 552 (01) : 87 - 97
  • [48] Genome-wide identification and expression analysis of WRKY gene family members in red clover (Trifolium pratense L.)
    Yuan, Guoxin
    Zhang, Nijing
    Zou, Yiming
    Hao, Yaqi
    Pan, Jiahao
    Liu, Yongzhao
    Zhang, Weiguo
    Li, Beibei
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [49] Genome-Wide Identification and Expression Analysis of ADK Gene Family Members in Cotton under Abiotic Stress
    Huang, Peijun
    Lin, Ziwei
    Zhang, Yuzhi
    Gao, Yu
    Tan, Songjuan
    Wang, Shuai
    Cao, Xiaoyu
    Shi, Hongyan
    Sun, Chao
    Bai, Jiangping
    Ma, Xiongfeng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)
  • [50] Genome-Wide Identification, Expression, and Activity Analysis of Alkaline/Neutral Invertase Gene Family from Cassava (Manihot esculenta Crantz)
    Yao, Yuan
    Geng, Meng-Ting
    Wu, Xiao-Hui
    Liu, Jiao
    Li, Rui-Mei
    Hu, Xin-Wen
    Guo, Jian-Chun
    PLANT MOLECULAR BIOLOGY REPORTER, 2015, 33 (02) : 304 - 315