Genome-wide identification and expression of GRAS gene family members in cassava

被引:44
|
作者
Shan, Zhongying [1 ,3 ]
Luo, Xinglu [1 ,2 ]
Wu, Meiyan [1 ]
Wei, Limei [1 ]
Fan, Zhupeng [1 ]
Zhu, Yanmei [1 ]
机构
[1] Guangxi Univ, Coll Agr, Nanning 530005, Peoples R China
[2] State Key Lab Conservat & Utilizat Subtrop Agrobi, Nanning 530004, Peoples R China
[3] Dezhou Univ, Coll Ecol & Garden Architecture, Dezhou 253023, Peoples R China
关键词
Cassava; GRAS genes; Gene expression; Abiotic stress; SCARECROW-LIKE; 3; SIGNALING PATHWAY; SHORT-ROOT; ARABIDOPSIS; PROTEINS; STRESS; GROWTH; DELLA; RICE; ACCUMULATION;
D O I
10.1186/s12870-020-2242-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Cassava is highly tolerant to stressful conditions, especially drought stress conditions; however, the mechanisms underlying this tolerance are poorly understood. The GRAS gene family is a large family of transcription factors that are involved in regulating the growth, development, and stress responses of plants. Currently, GRAS transcription factors have not been systematically studied in cassava, which is the sixth most important crop in the world. Results Seventy-seven MeGRAS genes were identified from the cassava genome database. Phylogenetic analysis revealed that the MeGRAS proteins could be divided into 14 subfamilies. The gene structure and motif compositions of the proteins were considerably conserved within the same subfamily. Duplication events, particularly segmental duplication, were identified as the main driving force for GRAS gene expansion in cassava. Global expression analysis revealed that MeGRAS genes exhibited similar or distinct expression profiles within different tissues among different varieties. Moreover, qRT-PCR analysis revealed the expression patterns of MeGRAS genes in response to abiotic stress (drought, salt, cold, and H2O2), and the results suggest that these genes may have multiple functions. Conclusion This study is the first to provide comprehensive information on GRAS gene family members in cassava. The data will increase our understanding of both the molecular basis and the effects of GRAS genes. In addition, the results will contribute further to identifying the responses to various environmental conditions and provide insights into the potential functions of GRAS genes.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Genome-Wide Identification and Analysis of the GRAS Transcription Factor Gene Family in Theobroma cacao
    Hou, Sijia
    Zhang, Qianqian
    Chen, Jing
    Meng, Jianqiao
    Wang, Cong
    Du, Junhong
    Guo, Yunqian
    GENES, 2023, 14 (01)
  • [22] Genome-wide identification, expression analysis and functional study of the GRAS gene family in Tartary buckwheat (Fagopyrum tataricum)
    Liu, Moyang
    Huang, Li
    Ma, Zhaotang
    Sun, Wenjun
    Wu, Qi
    Tang, Zizhong
    Bu, Tongliang
    Li, Chenglei
    Chen, Hui
    BMC PLANT BIOLOGY, 2019, 19 (01)
  • [23] Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)
    Wang, Yong-Xin
    Liu, Zhi-Wei
    Wu, Zhi-Jun
    Li, Hui
    Wang, Wen-Li
    Cui, Xin
    Zhuang, Jing
    SCIENTIFIC REPORTS, 2018, 8
  • [24] Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz)
    Ou, Wenjun
    Mao, Xiang
    Huang, Chao
    Tie, Weiwei
    Yan, Yan
    Ding, Zehong
    Wu, Chunlai
    Xia, Zhiqiang
    Wang, Wenquan
    Zhou, Shiyi
    Li, Kaimian
    Hu, Wei
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [25] Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava
    Yan, Yan
    Wang, Lianzhe
    Ding, Zehong
    Tie, Weiwei
    Ding, Xupo
    Zeng, Changying
    Wei, Yunxie
    Zhao, Hongliang
    Peng, Ming
    Hu, Wei
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [26] GRAS gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses
    Fan, Yu
    Wan, Xianqi
    Zhang, Xin
    Zhang, Jieyu
    Zheng, Chunyu
    Yang, Qiaohui
    Yang, Li
    Li, Xiaolong
    Feng, Liang
    Zou, Liang
    Xiang, Dabing
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [27] Genome-wide identification, structural and gene expression analysis of BTB gene family in soybean
    Elsanosi, Hind Abdelmonim
    Zhang, Jianhua
    Mostafa, Salma
    Geng, Xiaoyan
    Zhou, Guisheng
    Awdelseid, Atef Hemaida Mohammed
    Song, Li
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [28] Genome-wide identification, structural analysis and expression profiles of GRAS gene family in orchardgrass
    Xiaoheng Xu
    Guangyan Feng
    Linkai Huang
    Zhongfu Yang
    Qiuxu Liu
    Yang Shuai
    Xinquan Zhang
    Molecular Biology Reports, 2020, 47 : 1845 - 1857
  • [29] Genome-Wide Identification and Expression Pattern of the GRAS Gene Family in Pitaya (Selenicereus undatus L.)
    Zaman, Qamar U.
    Hussain, Muhammad Azhar
    Khan, Latif Ullah
    Cui, Jian-Peng
    Hui, Liu
    Khan, Darya
    Lv, Wei
    Wang, Hua-Feng
    BIOLOGY-BASEL, 2023, 12 (01):
  • [30] Genome-Wide Identification and Expression Analysis of the GRAS Gene Family and Their Responses to Heat Stress in Cymbidium goeringii
    Huang, Ye
    Zheng, Qinyao
    Zhang, Meng-Meng
    He, Xin
    Zhao, Xuewei
    Wang, Linying
    Lan, Siren
    Liu, Zhong-Jian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)