Traffic Signal Prediction on Transportation Networks Using Spatio-Temporal Correlations on Graphs

被引:5
|
作者
Kwak, Semin [1 ]
Geroliminis, Nikolas [2 ]
Frossard, Pascal [3 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Elect Engn, Urban Transport Syst Lab LUTS, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Urban Transport Syst Lab LUTS, Civil Engn, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne EPFL, Signal Proc Lab LTS4, Elect Engn, CH-1015 Lausanne, Switzerland
来源
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS | 2021年 / 7卷 / 07期
基金
瑞士国家科学基金会;
关键词
Predictive models; Kernel; Correlation; Transportation; Data models; Indexes; Computational modeling; Multivariate time series forecasting; Bayesian inference; heat diffusion model; dynamic linear model;
D O I
10.1109/TSIPN.2021.3118489
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multivariate time series forecasting poses challenges as the variables are intertwined in time and space, like in the case of traffic signals. Defining signals on graphs relaxes such complexities by representing the evolution of signals over a space using relevant graph kernels such as the heat diffusion kernel. However, this kernel alone does not fully capture the actual dynamics of the data as it only relies on the graph structure. The gap can be filled by combining the graph kernel representation with data-driven models that utilize historical data. This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals. We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches. Such mixing ratio strongly depends on training data size and data anomalies, which typically correspond to the peak hours for traffic data. The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort. It notably achieves excellent performance for long-term prediction through the inheritance of periodicity modeling in data-driven models.
引用
收藏
页码:648 / 659
页数:12
相关论文
共 50 条
  • [1] Spatio-Temporal Multivariate Probabilistic Modeling for Traffic Prediction
    An, Yang
    Li, Zhibin
    Li, Xiaoyu
    Liu, Wei
    Yang, Xinghao
    Sun, Haoliang
    Chen, Meng
    Zheng, Yu
    Gong, Yongshun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2986 - 3000
  • [2] Modeling Dynamic Spatio-Temporal Correlations for Urban Traffic Flows Prediction
    Awan, Nabeela
    Ali, Ahmad
    Khan, Fazlullah
    Zakarya, Muhammad
    Alturki, Ryan
    Kundi, Mahwish
    Alshehri, Mohammad Dahman
    Haleem, Muhammad
    IEEE ACCESS, 2021, 9 : 26502 - 26511
  • [3] Spatio-Temporal Characterization of Stochastic Dynamic Transportation Networks
    Filipovska, Monika
    Mahmassani, Hani S. S.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (09) : 9929 - 9939
  • [4] SAX-STGCN: Dynamic Spatio-Temporal Graph Convolutional Networks for Traffic Flow Prediction
    Lei, Bin
    Zhang, Peng
    Suo, Yifei
    Li, Na
    IEEE ACCESS, 2022, 10 : 107022 - 107031
  • [5] STFGCN: Spatio-Temporal Fusion Graph Convolutional Networks for Subway Traffic Prediction
    Zhang, Xiaoxi
    Tian, Zhanwei
    Shi, Yan
    Guan, Qingwen
    Lu, Yan
    Pan, Yujie
    IEEE ACCESS, 2024, 12 : 194449 - 194461
  • [6] Transformer-Based Spatio-Temporal Traffic Prediction for Access and Metro Networks
    Wang, Fu
    Xin, Xiangjun
    Lei, Zhewei
    Zhang, Qi
    Yao, Haipeng
    Wang, Xiaolong
    Tian, Qinghua
    Tian, Feng
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (15) : 5204 - 5213
  • [7] ST-VGBiGRU: A Hybrid Model for Traffic Flow Prediction With Spatio-Temporal Multimodality
    Yin, Lisheng
    Liu, Pan
    Wu, Yangyang
    Shi, Cheng
    Wei, Xinyue
    He, Yigang
    IEEE ACCESS, 2023, 11 : 54968 - 54985
  • [8] Adaptive Spatio-Temporal Relation Based Transformer for Traffic Flow Prediction
    Wang, Ruidong
    Xi, Liang
    Ye, Jinlin
    Zhang, Fengbin
    Yu, Xu
    Xu, Lingwei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2220 - 2230
  • [9] Spatio-Temporal Contrastive Learning-Based Adaptive Graph Augmentation for Traffic Flow Prediction
    Zhang, Dingkai
    Wang, Pengfei
    Ding, Lu
    Wang, Xiaoling
    He, Jifeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 1304 - 1318
  • [10] Dynamic Spatio-Temporal Graph-Based CNNs for Traffic Flow Prediction
    Chen, Ken
    Chen, Fei
    Lai, Baisheng
    Jin, Zhongming
    Liu, Yong
    Li, Kai
    Wei, Long
    Wang, Pengfei
    Tang, Yandong
    Huang, Jianqiang
    Hua, Xian-Sheng
    IEEE ACCESS, 2020, 8 : 185136 - 185145