Cognitive Decline and BPSD Are Concomitant with Autophagic and Synaptic Deficits Associated with G9a Alterations in Aged SAMP8 Mice

被引:18
作者
Vasilopoulou, Foteini [1 ]
Bellver-Sanchis, Aina [1 ]
Companys-Alemany, Julia [1 ]
Jarne-Ferrer, Julia [1 ]
Irisarri, Alba [1 ]
Palomera-Avalos, Veronica [1 ]
Gonzalez-Castillo, Celia [2 ]
Ortuno-Sahagun, Daniel [3 ]
Sanfeliu, Coral [4 ,5 ]
Pallas, Merce [1 ]
Grinan-Ferre, Christian [1 ]
机构
[1] Univ Barcelona, Fac Pharm & Food Sci, Inst Neurociencies, Dept Pharmacol & Therapeut Chem, Avda Joan XXIII 27, Barcelona 08028, Spain
[2] Tecnol Monterrey, Escuela Med & Ciencias Salud, Zapopan 64710, Mexico
[3] Univ Guadalajara, Inst Invest Ciencias Biomed IICB CUCS, Lab Neuroinmunol Mol, Guadalajara 44340, Jalisco, Mexico
[4] CSIC, Inst Invest Biomed Barcelona IIBB, Barcelona 08036, Spain
[5] Inst Invest Biomed August Pi & Sunyer IDIBAPS, Barcelona 08036, Spain
关键词
BPSD; aggressivity; cognitive decline; autophagy; epigenetics; G9a; SAMP8; SENESCENCE-ACCELERATED-PRONE; DENDRITIC SPINE DENSITY; ALZHEIMERS-DISEASE; EPIGENETIC REGULATION; PSYCHOLOGICAL SYMPTOMS; MOUSE MODELS; BRAIN; BDNF; ACTIVATION; MECHANISMS;
D O I
10.3390/cells11162603
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Behavioural and psychological symptoms of dementia (BPSD) are presented in 95% of Alzheimer's Disease (AD) patients and are also associated with neurotrophin deficits. The molecular mechanisms leading to age-related diseases are still unclear; however, emerging evidence has suggested that epigenetic modulation is a key pathophysiological basis of ageing and neurodegeneration. In particular, it has been suggested that G9a methyltransferase and its repressive histone mark (H3K9me2) are important in shaping learning and memory by modulating autophagic activity and synaptic plasticity. This work deepens our understanding of the epigenetic mechanisms underlying the loss of cognitive function and BPSD in AD. For this purpose, several tasks were performed to evaluate the parameters of sociability (three-chamber test), aggressiveness (resident intruder), anxiety (elevated plus maze and open field) and memory (novel object recognition test) in mice, followed by the evaluation of epigenetic, autophagy and synaptic plasticity markers at the molecular level. The behavioural alterations presented by senescence-accelerated mice prone 8 (SAMP8) of 12 months of age compared with their senescence-accelerated mouse resistant mice (SAMR1), the healthy control strain was accompanied by age-related cognitive deficits and alterations in epigenetic markers. Increased levels of G9a are concomitant to the dysregulation of the JNK pathway in aged SAMP8, driving a failure in autophagosome formation. Furthermore, lower expression of the genes involved in the memory-consolidation process modulated by ERK was observed in the aged male SAMP8 model, suggesting the implication of G9a. In any case, two of the most important neurotrophins, namely brain-derived neurotrophic factor (Bdnf) and neurotrophin-3 (NT3), were found to be reduced, along with a decrease in the levels of dendritic branching and spine density presented by SAMP8 mice. Thus, the present study characterizes and provides information regarding the non-cognitive and cognitive states, as well as molecular alterations, in aged SAMP8, demonstrating the AD-like symptoms presented by this model. In any case, our results indicate that higher levels of G9a are associated with autophagic deficits and alterations in synaptic plasticity, which could further explain the BPSD and cognitive decline exhibited by the model.
引用
收藏
页数:17
相关论文
共 82 条
[1]   SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions [J].
Akiguchi, Ichiro ;
Pallas, Merce ;
Budka, Herbert ;
Akiyama, Haruhiko ;
Ueno, Masaki ;
Han, Jingxian ;
Yagi, Hideo ;
Nishikawa, Tomohumi ;
Chiba, Yoichi ;
Sugiyama, Hiroshi ;
Takahashi, Ryoya ;
Unno, Keiko ;
Higuchi, Keiichi ;
Hosokawa, Masanori .
NEUROPATHOLOGY, 2017, 37 (04) :293-305
[2]  
Allen SJ, 2011, CURR NEUROPHARMACOL, V9, P559, DOI 10.2174/157015911798376190
[3]   ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons [J].
Alonso, M ;
Medina, JH ;
Pozzo-Miller, L .
LEARNING & MEMORY, 2004, 11 (02) :172-178
[4]   Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning [J].
Ambigapathy, Ganesh ;
Zheng, Zhaoqing ;
Keifer, Joyce .
EPIGENETICS, 2015, 10 (10) :981-993
[5]   Aggressive and impulsive behavior in Alzheimer's disease and progression of dementia [J].
Bidzan, Leszek ;
Bidzan, Mariola ;
Pachalska, Maria .
MEDICAL SCIENCE MONITOR, 2012, 18 (03) :CR182-CR189
[6]   Epigenetic regulation of the BDNF gene: implications for psychiatric disorders [J].
Boulle, F. ;
van den Hove, D. L. A. ;
Jakob, S. B. ;
Rutten, B. P. ;
Hamon, M. ;
van Os, J. ;
Lesch, K-P ;
Lanfumey, L. ;
Steinbusch, H. W. ;
Kenis, G. .
MOLECULAR PSYCHIATRY, 2012, 17 (06) :584-596
[7]   Deficits in Social Behavior Precede Cognitive Decline in Middle-Aged Mice [J].
Boyer, Flora ;
Jaouen, Florence ;
Ibrahim, El Cherif ;
Gascon, Eduardo .
FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2019, 13
[8]   Increased Hippocampal ProBDNF Contributes to Memory Impairments in Aged Mice [J].
Buhusi, Mona ;
Etheredge, Chris ;
Granholm, Ann-Charlotte ;
Buhusi, Catalin V. .
FRONTIERS IN AGING NEUROSCIENCE, 2017, 9
[9]  
Cerejeira J, 2012, Front Neurol, V3, P73, DOI 10.3389/fneur.2012.00073
[10]   Age-related changes in anxiety are task-specific in the senescence-accelerated prone mouse 8 [J].
Chen, Gui-Hai ;
Wang, Cheng ;
Yangcheng, Han-Yu ;
Liu, Rong-Yu ;
Zhou, Jiang-Ning .
PHYSIOLOGY & BEHAVIOR, 2007, 91 (05) :644-651