Latent semantic structure indexing (LaSSI) for defining chemical similarity

被引:30
|
作者
Hull, RD [1 ]
Singh, SB [1 ]
Nachbar, RB [1 ]
Sheridan, RP [1 ]
Kearsley, SK [1 ]
Fluder, EM [1 ]
机构
[1] Merck Res Labs, Dept Mol Syst, Rahway, NJ 07065 USA
关键词
D O I
10.1021/jm000393c
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A novel method for computing chemical similarity from chemical substructure descriptors is described. This new method, called LaSSI, uses the singular value decomposition (SVD) of a chemical descriptor-molecule matrix to create a low-dimensional representation of the original descriptor space. Ranking molecules by similarity to a probe molecule in the reduced-dimensional space has several advantages over analogous ranking in the original descriptor space: matching latent structures is more robust than matching discrete descriptors, choosing the number of singular values provides a rational way to vary the "fuzziness" of the search, and the reduction in the dimensionality of the chemical space increases-searching speed. LaSSI also allows the calculation of the similarity between two descriptors and between a descriptor and a molecule.
引用
收藏
页码:1177 / 1184
页数:8
相关论文
共 50 条
  • [31] Latent Semantic Indexing for Web Service Retrieval
    Czyszczon, Adam
    Zgrzywa, Aleksander
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, ICCCI 2014, 2014, 8733 : 694 - 702
  • [32] Spam filtering based on latent semantic indexing
    Gansterer, Wilfried N.
    Janecek, Andreas G. K.
    Neumayer, Robert
    SURVEY OF TEXT MINING II: CLUSTERING, CLASSIFICATION, AND RETRIEVAL, 2008, : 165 - +
  • [33] Knowledge-Enhanced Latent Semantic Indexing
    David Guo
    Michael W. Berry
    Bryan B. Thompson
    Sidney Bailin
    Information Retrieval, 2003, 6 : 225 - 250
  • [34] Supervised latent semantic indexing for document categorization
    Sun, JT
    Chen, Z
    Zeng, HJ
    Lu, YC
    Shi, CY
    Ma, WY
    FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 535 - 538
  • [35] Hierarchy-regularized latent semantic indexing
    Huang, Y
    Yu, K
    Schubert, M
    Yu, SP
    Tresp, V
    Kriegel, HP
    FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 178 - 185
  • [36] Clustered SVD strategies in latent semantic indexing
    Gao, J
    Zhang, J
    INFORMATION PROCESSING & MANAGEMENT, 2005, 41 (05) : 1051 - 1063
  • [37] Research On Optimize Technology in Latent Semantic Indexing Based On Semantic Block
    Cai, Dongfeng
    Guo, Dongbo
    Ji, Duo
    PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 680 - 684
  • [38] Understanding Latent Semantic Indexing: A Topological Structure Analysis Using Q-Analysis
    Li, Dandan
    Kwong, Chung-Ping
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2010, 61 (03): : 592 - 608
  • [39] Application of latent semantic indexing to evaluate the similarity of sets of sequences without multiple alignments character-by-character
    Couto, B. R. G. M.
    Ladeira, A. P.
    Santos, M. A.
    GENETICS AND MOLECULAR RESEARCH, 2007, 6 (04): : 983 - 999
  • [40] Framework for document retrieval using latent semantic indexing
    Phadnis, Neelam
    Gadge, Jayant
    International Journal of Computers and Applications, 2014, 94 (14) : 37 - 41