Plasmon-exciton interactions in a spheroidal multilayer nanoshell for refractive index sensor application

被引:8
作者
Firoozi, A. [1 ]
Khordad, R. [1 ]
Mohammadi, A. [2 ]
Jalali, T. [2 ]
机构
[1] Univ Yasuj, Dept Phys, Yasuj 75918, Iran
[2] Persian Gulf Univ, Dept Phys, Bushehr 75196, Iran
关键词
NANOPARTICLES;
D O I
10.1140/epjp/s13360-021-02094-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We used the finite difference time domain method to calculate scattering spectra for a multilayer nanoshell (MNS) consisting of a gold core, a molecular layer and a gold shell. The effects of geometrical parameters of the multilayer nanoshell (MNS) such as size, aspect ratio, the thickness of the shell and middle layer on the scattering properties of the MNS are investigated. We have also studied the plasmon-exciton coupling. In order to determine the coupling region, our numerical data are fitted to the coupled oscillator model. According to the obtained results, the plasmon-exciton coupling is found in the intermediate region. The plasmon-exciton coupling can be achieved and utilized as a sensor for sensing the refractive index changes. Variation of geometrical parameters of the multilayer nanoshell affects the strength of coupling and hence the sensitivity and detection accuracy of the sensor. The understanding of coupling mechanisms paves the way for the optimal design of the proposed sensor. We finally quantify and compare the performance of the sensor against previously introduced similar sensors.
引用
收藏
页数:15
相关论文
共 27 条
[1]   Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling [J].
Antosiewicz, Tomasz J. ;
Apell, S. Peter ;
Shegai, Timur .
ACS PHOTONICS, 2014, 1 (05) :454-463
[2]   Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling [J].
Balasubrahmaniyam, M. ;
Kar, Durgesh ;
Sen, Prabal ;
Bisht, Prem B. ;
Kasiviswanathan, S. .
APPLIED PHYSICS LETTERS, 2017, 110 (17)
[3]   Strong coupling between localized and propagating plasmon polaritons [J].
Balci, Sinan ;
Karademir, Ertugrul ;
Kocabas, Coskun .
OPTICS LETTERS, 2015, 40 (13) :3177-3180
[4]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[5]   Plasmonic-Molecular Resonance Coupling: Plasmonic Splitting versus Energy Transfer [J].
Chen, Huanjun ;
Shao, Lei ;
Woo, Kat Choi ;
Wang, Jianfang ;
Lin, Hai-Qing .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (26) :14088-14095
[6]  
Coles DM, 2014, NAT MATER, V13, P712, DOI [10.1038/nmat3950, 10.1038/NMAT3950]
[7]   Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching [J].
Delga, A. ;
Feist, J. ;
Bravo-Abad, J. ;
Garcia-Vidal, F. J. .
PHYSICAL REVIEW LETTERS, 2014, 112 (25)
[8]   Colloidal Plasmonics for Active Nanophotonics [J].
Gaponenko, Sergey, V ;
Guzatov, Dmitry, V .
PROCEEDINGS OF THE IEEE, 2020, 108 (05) :704-720
[9]   Optical properties of gold-silica-gold multilayer nanoshells [J].
Hu, Ying ;
Fleming, Ryan C. ;
Drezek, Rebekah A. .
OPTICS EXPRESS, 2008, 16 (24) :19579-19591
[10]   Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO [J].
Jamadi, O. ;
Reveret, F. ;
Mallet, E. ;
Disseix, P. ;
Medard, F. ;
Mihailovic, M. ;
Solnyshkov, D. ;
Malpuech, G. ;
Leymarie, J. ;
Lafosse, X. ;
Bouchoule, S. ;
Li, F. ;
Leroux, M. ;
Semond, F. ;
Zuniga-Perez, J. .
PHYSICAL REVIEW B, 2016, 93 (11)