QTLs Associated with Agronomic Traits in the Cutler x AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers

被引:37
作者
Perez-Lara, Enid [1 ]
Semagn, Kassa [1 ]
Chen, Hua [1 ]
Iqbal, Muhammad [1 ,6 ]
N'Diaye, Amidou [2 ,3 ]
Kamran, Atif [4 ]
Navabi, Alireza [5 ]
Pozniak, Curtis [2 ,3 ]
Spaner, Dean [1 ]
机构
[1] Univ Alberta, Agr Forestry Ctr 4 10, Dept Agr Food & Nutr Sci, Edmonton, AB T6G 2P5, Canada
[2] Univ Saskatchewan, Ctr Crop Dev, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada
[3] Univ Saskatchewan, Dept Plant Sci, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada
[4] Univ Punjab, Dept Bot, Seed Ctr, New Campus, Lahore 54590, Pakistan
[5] Univ Guelph, Dept Plant Agr, Crop Sci Bldg, Guelph, ON N1G 2W1, Canada
[6] Natl Agr Res Ctr, Natl Inst Genom & Adv Biotechnol, Pk Rd, Islamabad 45500, Pakistan
基金
加拿大自然科学与工程研究理事会;
关键词
FUSARIUM HEAD BLIGHT; ARRAYS TECHNOLOGY DART; MOLECULAR MARKERS; GENETIC-ANALYSIS; DWARFING GENES; RESISTANCE; VERNALIZATION; YIELD; IMPROVEMENT; SELECTION;
D O I
10.1371/journal.pone.0160623
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We recently reported three earliness per se quantitative trait loci (QTL) associated with flowering and maturity in a recombinant inbred lines (RILs) population derived from a cross between the spring wheat (Triticum aestivum L.) cultivars 'Cutler' and 'AC Barrie' using 488 microsatellite and diversity arrays technology (DArT) markers. Here, we present QTLs associated with flowering time, maturity, plant height, and grain yield using high density single nucleotide polymorphic (SNP) markers in the same population. A mapping population of 158 RILs and the two parents were evaluated at five environments for flowering, maturity, plant height and grain yield under field conditions, at two greenhouse environments for flowering, and genotyped with a subset of 1809 SNPs out of the 90K SNP array and 2 functional markers (Ppd-D1 and Rht-D1). Using composite interval mapping on the combined phenotype data across all environments, we identified a total of 19 QTLs associated with flowering time in greenhouse (5), and field (6) conditions, maturity (5), grain yield (2) and plant height (1). We mapped these QTLs on 8 chromosomes and they individually explained between 6.3 and 37.8% of the phenotypic variation. Four of the 19 QTLs were associated with multiple traits, including a QTL on 2D associated with flowering, maturity and grain yield; two QTLs on 4A and 7A associated with flowering and maturity, and another QTL on 4D associated with maturity and plant height. However, only the QTLs on both 2D and 4D had major effects, and they mapped adjacent to well-known photoperiod response Ppd-D1 and height reducing Rht-D1 genes, respectively. The QTL on 2D reduced flowering and maturity time up to 5 days with a yield penalty of 436 kg ha(-1), while the QTL on 4D reduced plant height by 13 cm, but increased maturity by 2 days. The high density SNPs allowed us to map eight moderate effect, two major effect, and nine minor effect QTLs that were not identified in our previous study using microsatellite and DArT markers. Results from this study provide additional information to wheat researchers developing early maturing and short stature spring wheat cultivars.
引用
收藏
页数:19
相关论文
共 68 条
[1]   Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome [J].
Akbari, Mona ;
Wenzl, Peter ;
Caig, Vanessa ;
Carling, Jason ;
Xia, Ling ;
Yang, Shiying ;
Uszynski, Grzegorz ;
Mohler, Volker ;
Lehmensiek, Anke ;
Kuchel, Haydn ;
Hayden, Mathew J. ;
Howes, Neil ;
Sharp, Peter ;
Vaughan, Peter ;
Rathmell, Bill ;
Huttner, Eric ;
Kilian, Andrzej .
THEORETICAL AND APPLIED GENETICS, 2006, 113 (08) :1409-1420
[2]   Mapping QTL, Selection Differentials, and the Effect of Rht-B1 under Organic and Conventionally Managed Systems in the Attila x CDC Go Spring Wheat Mapping Population [J].
Asif, M. ;
Yang, R. -C. ;
Navabi, A. ;
Iqbal, M. ;
Kamran, A. ;
Lara, E. P. ;
Randhawa, H. ;
Pozniak, C. ;
Spaner, D. .
CROP SCIENCE, 2015, 55 (03) :1129-1142
[3]   Genetic analysis of drought resistance in rice by molecular markers: Association between secondary traits and field performance [J].
Babu, RC ;
Nguyen, BD ;
Chamarerk, V ;
Shanmugasundaram, P ;
Chezhian, P ;
Jeyaprakash, P ;
Ganesh, SK ;
Palchamy, A ;
Sadasivam, S ;
Sarkarung, S ;
Wade, LJ ;
Nguyen, HT .
CROP SCIENCE, 2003, 43 (04) :1457-1469
[4]   Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat [J].
Bai, Caihong ;
Liang, Yinli ;
Hawkesford, Malcolm J. .
JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (06) :1745-1753
[5]   A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) [J].
Beales, James ;
Turner, Adrian ;
GriYths, Simon ;
Snape, John W. ;
Laurie, David A. .
THEORETICAL AND APPLIED GENETICS, 2007, 115 (05) :721-733
[6]   Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments [J].
Bennett, Dion ;
Izanloo, Ali ;
Reynolds, Matthew ;
Kuchel, Haydn ;
Langridge, Peter ;
Schnurbusch, Thorsten .
THEORETICAL AND APPLIED GENETICS, 2012, 125 (02) :255-271
[7]   Evaluation and Bulked Segregant Analysis of Major Yield QTL qtl12.1 Introgressed into Indigenous Elite Line for Low Water Availability under Water Stress [J].
Boopathi, N. Manikanda ;
Swapnashri, Gat ;
Kavitha, P. ;
Sathish, S. ;
Nithya, R. ;
Ratnam, Wickneswari ;
Kumar, Arvind .
RICE SCIENCE, 2013, 20 (01) :25-30
[8]   Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance) [J].
Buerstmayr, H ;
Lemmens, M ;
Hartl, L ;
Doldi, L ;
Steiner, B ;
Stierschneider, M ;
Ruckenbauer, P .
THEORETICAL AND APPLIED GENETICS, 2002, 104 (01) :84-91
[9]   Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars [J].
Cavanagh, Colin R. ;
Chao, Shiaoman ;
Wang, Shichen ;
Huang, Bevan Emma ;
Stephen, Stuart ;
Kiani, Seifollah ;
Forrest, Kerrie ;
Saintenac, Cyrille ;
Brown-Guedira, Gina L. ;
Akhunova, Alina ;
See, Deven ;
Bai, Guihua ;
Pumphrey, Michael ;
Tomar, Luxmi ;
Wong, Debbie ;
Kong, Stephan ;
Reynolds, Matthew ;
da Silva, Marta Lopez ;
Bockelman, Harold ;
Talbert, Luther ;
Anderson, James A. ;
Dreisigacker, Susanne ;
Baenziger, Stephen ;
Carter, Arron ;
Korzun, Viktor ;
Morrell, Peter Laurent ;
Dubcovsky, Jorge ;
Morell, Matthew K. ;
Sorrells, Mark E. ;
Hayden, Matthew J. ;
Akhunov, Eduard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (20) :8057-8062
[10]   Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background [J].
Chee, PW ;
Elias, EM ;
Anderson, JA ;
Kianian, SF .
CROP SCIENCE, 2001, 41 (02) :295-301