Comparison of flame-front instabilities with instabilities of ablation fronts in inertial-confinement fusion

被引:5
|
作者
Clavin, P [1 ]
Masse, L
Williams, FA
机构
[1] Univ Aix Marseille, Inst Rech Phenomenes Hors Equilibre, Marseille, France
[2] CNRS, Marseille, France
[3] Commissariat Energie Atom DAM, Ile De France, Bryeres Chatel, France
[4] Univ Calif San Diego, Dept Mech & Aerosp Engn, Energy Res Ctr, La Jolla, CA 92093 USA
关键词
ablation fronts; inertial confinement fusion; flames;
D O I
10.1080/00102200590926950
中图分类号
O414.1 [热力学];
学科分类号
摘要
There are both similarities and differences between instabilities of planar laminar flame fronts and ablation fronts in inertial-confinement fusion (ICF). The mathematical formulation of the problem in ICF is the same as for flames propagating upward; the differences stem from the different order of magnitude of the Froude number and thermal conductivity variations. When the thermal conductivity varies strongly, as in ICF, a wide range of characteristic diffusive lengths occurs across the wave structure. For disturbances with intermediate wavelengths, there is then a universal diffusive relaxation rate of thermal waves that is independent of the thermal conductivity. A kinematic relation for the ablation front is discussed here that includes this thermal relaxation. The resulting formulation facilitates comparison of the two types of fronts.
引用
收藏
页码:979 / 989
页数:11
相关论文
共 50 条
  • [31] HEAVY-ION BEAM INERTIAL-CONFINEMENT FUSION
    ARNOLD, RC
    NATURE, 1978, 276 (5683) : 19 - 23
  • [32] Impeding Hohlraum Plasma Stagnation in Inertial-Confinement Fusion
    Li, C. K.
    Seguin, F. H.
    Frenje, J. A.
    Rosenberg, M. J.
    Rinderknecht, H. G.
    Zylstra, A. B.
    Petrasso, R. D.
    Amendt, P. A.
    Landen, O. L.
    Mackinnon, A. J.
    Town, R. P. J.
    Wilks, S. C.
    Betti, R.
    Meyerhofer, D. D.
    Soures, J. M.
    Hund, J.
    Kilkenny, J. D.
    Nikroo, A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [33] Self-consistent stability analysis of ablation fronts in inertial confinement fusion
    Betti, R
    Goncharov, VN
    McCrory, RL
    Sorotokin, P
    Verdon, CP
    PHYSICS OF PLASMAS, 1996, 3 (05) : 2122 - 2128
  • [34] Species separation and modification of neutron diagnostics in inertial-confinement fusion
    Inglebert, A.
    Canaud, B.
    Larroche, O.
    EPL, 2014, 107 (06)
  • [35] INERTIAL-CONFINEMENT FUSION USING CHARGED-PARTICLE BEAMS
    CLAUSER, MJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1301 - 1301
  • [36] PRODUCTION AND CHARACTERIZATION OF DOPED MANDRELS FOR INERTIAL-CONFINEMENT FUSION EXPERIMENTS
    COOK, R
    OVERTURF, GE
    BUCKLEY, SR
    MCEACHERN, R
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1994, 12 (04): : 1275 - 1280
  • [37] LIGHT-ION-BEAM TRANSPORT FOR INERTIAL-CONFINEMENT FUSION
    MOSHER, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (04): : 628 - 629
  • [38] Flame-Front Instabilities of Outwardly Expanding Isooctane/n-Butanol Blend-Air Flames at Elevated Pressures
    Zhang, Xinyi
    Tang, Chenglong
    Yu, Huibin
    Huang, Zuohua
    ENERGY & FUELS, 2014, 28 (03) : 2258 - 2266
  • [39] WEAKLY NONLINEAR HYDRODYNAMIC INSTABILITIES IN INERTIAL FUSION
    HAAN, SW
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (08): : 2349 - 2355
  • [40] The linear Darrieus-Landau and Rayleigh-Taylor instabilities in inertial confinement fusion revisited
    Sanz, J.
    Masse, L.
    Clavin, P.
    PHYSICS OF PLASMAS, 2006, 13 (10)