Closed-loop process for recovery of metals from NdFeB magnets using a trichloride ionic liquid

被引:20
作者
Li, Xiaohua [1 ]
Li, Zheng [1 ]
Binnemans, Koen [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem, Celestijnenlaan 200F,Box 2404, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Oxidative dissolution; Polyhalides; Permanent magnets; Rare earths; Recycling; RARE-EARTH-ELEMENTS; SELECTIVE EXTRACTION; SOLVENT-EXTRACTION; NEODYMIUM; LANTHANIDE; LITHIUM; WASTE; SCRAP;
D O I
10.1016/j.seppur.2021.119158
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A solvometallurgical process was developed to recover rare-earth elements and cobalt from end-of-life NdFeB magnets, using the ionic liquid (IL) trihexyltetradecylphosphonium trichloride ([P-666,P-14][Cl-3]), or a mixture of [P-666,P-14][Cl-3] and the corresponding chloride IL [P-666,P-14]Cl. The process comprises dissolution, stripping and regeneration of the ionic liquid. Pure [P-666,P-14][Cl-3] or its mixture with [P-666,P-14]Cl could quantitatively dissolve NdFeB magnets when the solid-to-liquid ratio was less than a certain threshold value that depended on the volume percentage of [P-666,P-14][Cl-3] in the lixiviant. Increasing the temperature from 25 to 50 degrees C enhanced the dissolution rate significantly, but the dissolution efficiency increased only marginally. The volume percentage of [P-666,P-14][Cl-3] in [P-666,P-14]Cl had a positive effect on the dissolution efficiency. The rare-earth and transition metals could be removed selectively by two sequential stripping steps, using 3 mol.L-1 of NaCl aqueous solution and >2 mol.L-1 of aqueous ammonia solutions, respectively. The regenerated IL [P-666,P-14][Cl-3] showed a similar dissolution efficiency to the fresh ionic liquid.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Ionometallurgy: designer redox properties for metal processing [J].
Abbott, A. P. ;
Frisch, G. ;
Gurman, S. J. ;
Hillman, A. R. ;
Hartley, J. ;
Holyoak, F. ;
Ryder, K. S. .
CHEMICAL COMMUNICATIONS, 2011, 47 (36) :10031-10033
[2]   Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions [J].
Allen, PG ;
Bucher, JJ ;
Shuh, DK ;
Edelstein, NM ;
Craig, I .
INORGANIC CHEMISTRY, 2000, 39 (03) :595-601
[3]   Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact [J].
Balaram, V. .
GEOSCIENCE FRONTIERS, 2019, 10 (04) :1285-1303
[4]  
Bian Y., 2016, ACS SUSTAIN CHEM ENG, V4
[5]   Lanthanides and actinides in ionic liquids [J].
Binnemans, Koen .
CHEMICAL REVIEWS, 2007, 107 (06) :2592-2614
[6]   Solvometallurgy: An Emerging Branch of Extractive Metallurgy [J].
Binnemans, Koen ;
Jones, Peter Tom .
JOURNAL OF SUSTAINABLE METALLURGY, 2017, 3 (03) :570-600
[7]   Electrodeposition of indium from the ionic liquid trihexyl(tetradecyl)phosphonium chloride [J].
Deferm, Clio ;
Malaquias, Joao C. ;
Onghena, Bieke ;
Banerjee, Dipanjan ;
Luyten, Jan ;
Oosterhof, Harald ;
Fransaer, Jan ;
Binnemans, Koen .
GREEN CHEMISTRY, 2019, 21 (06) :1517-1530
[8]   Recycling of NdFeB Magnets from Electric Drive Motors of (Hybrid) Electric Vehicles [J].
Elwert, Tobias ;
Goldmann, Daniel ;
Roemer, Felix ;
Schwarz, Sabrina .
JOURNAL OF SUSTAINABLE METALLURGY, 2017, 3 (01) :108-121
[9]   Review of High-Temperature Recovery of Rare Earth (Nd/Dy) from Magnet Waste [J].
Firdaus M. ;
Rhamdhani M.A. ;
Durandet Y. ;
Rankin W.J. ;
McGregor K. .
Journal of Sustainable Metallurgy, 2016, 2 (04) :276-295
[10]   Recovery of Rare-Earth Elements from Neodymium Magnet Waste Using Glycolic, Maleic, and Ascorbic Acids Followed by Solvent Extraction [J].
Gergoric, Marino ;
Barrier, Antonin ;
Retegan, Teodora .
JOURNAL OF SUSTAINABLE METALLURGY, 2019, 5 (01) :85-96