A Supervised Multi-Head Self-Attention Network for Nested Named Entity Recognition

被引:0
|
作者
Xu, Yongxiu [1 ,2 ]
Huang, Heyan [3 ]
Feng, Chong [3 ]
Hu, Yue [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, researchers have shown an increased interest in recognizing the overlapping entities that have nested structures. However, most existing models ignore the semantic correlation between words under different entity types. Considering words in sentence play different roles under different entity types, we argue that the correlation intensities of pairwise words in sentence for each entity type should be considered. In this paper, we treat named entity recognition as a multi-class classification of word pairs and design a simple neural model to handle this issue. Our model applies a supervised multi-head self-attention mechanism, where each head corresponds to one entity type, to construct the word-level correlations for each type. Our model can flexibly predict the span type by the correlation intensities of its head and tail under the corresponding type. In addition, we fuse entity boundary detection and entity classification by a multi-task learning framework, which can capture the dependencies between these two tasks. To verify the performance of our model, we conduct extensive experiments on both nested and flat datasets. The experimental results show that our model can outperform the previous state-of-the-art methods on multiple tasks without any extra NLP tools or human annotations.
引用
收藏
页码:14185 / 14193
页数:9
相关论文
共 50 条
  • [1] Fast Neural Chinese Named Entity Recognition with Multi-head Self-attention
    Qi, Tao
    Wu, Chuhan
    Wu, Fangzhao
    Ge, Suyu
    Liu, Junxin
    Huang, Yongfeng
    Xie, Xing
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE COMPUTING AND LANGUAGE UNDERSTANDING, 2019, 1134 : 98 - 110
  • [2] Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF
    An, Ying
    Xia, Xianyun
    Chen, Xianlai
    Wu, Fang-Xiang
    Wang, Jianxin
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 127
  • [3] MSnet: Multi-Head Self-Attention Network for Distantly Supervised Relation Extraction
    Sun, Tingting
    Zhang, Chunhong
    Ji, Yang
    Hu, Zheng
    IEEE ACCESS, 2019, 7 : 54472 - 54482
  • [4] A multi-head adjacent attention-based pyramid layered model for nested named entity recognition
    Shengmin Cui
    Inwhee Joe
    Neural Computing and Applications, 2023, 35 : 2561 - 2574
  • [5] A multi-head adjacent attention-based pyramid layered model for nested named entity recognition
    Cui, Shengmin
    Joe, Inwhee
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2561 - 2574
  • [6] Named Entity Recognition Using EHealth-BiLSTM-CRF Combine with Multi-head Self-attention for Chinese Medical Information
    Wang, Bin
    Jiang, Fangjiao
    WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024, 2024, 14883 : 451 - 462
  • [7] DILATED RESIDUAL NETWORK WITH MULTI-HEAD SELF-ATTENTION FOR SPEECH EMOTION RECOGNITION
    Li, Runnan
    Wu, Zhiyong
    Jia, Jia
    Zhao, Sheng
    Meng, Helen
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6675 - 6679
  • [8] Attention as Relation: Learning Supervised Multi-head Self-Attention for Relation Extraction
    Liu, Jie
    Chen, Shaowei
    Wang, Bingquan
    Zhang, Jiaxin
    Li, Na
    Xu, Tong
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3787 - 3793
  • [9] Multi-head enhanced self-attention network for novelty detection
    Zhang, Yingying
    Gong, Yuxin
    Zhu, Haogang
    Bai, Xiao
    Tang, Wenzhong
    PATTERN RECOGNITION, 2020, 107
  • [10] Personalized multi-head self-attention network for news recommendation
    Zheng, Cong
    Song, Yixuan
    NEURAL NETWORKS, 2025, 181